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ABSTRACT  
 
Two methods were used to calculate the meteorologically adjusted ground level 
ozone trends in southern Taiwan.  The first method utilized is a robust MM linear 
regression method. The second approach uses a multilayer perceptron (MLP) neuron 
network method. The observations obtained from 16 monitoring stations were 
analyzed and divided into six groups by hierarchical divisive clustering procedure. 
The daily maximum 1 h and 8 h ozone concentrations for each region are then 
calculated. The meteorologically adjusted trends obtained by linear regression 
method and MLP method are smaller than the unadjusted trends for all regions and 
average time. It indicts that the meteorological conditions in Taiwan tend to increase 
ambient ozone concentrations in recent years. 
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1. INTRODUCTION 
 
Photochemical air pollution in Taiwan is a serious environmental issue. In the past 
two decades, aggressive control strategies have been employed by the government to 
reduce the emissions of ozone precursor substances (NOx and VOCs). These efforts 
substantially reduced the ambient concentrations of NOx and VOCs, however, 
ground-level ozone concentrations still exhibit increasing trends in southern Taiwan 
(Chen et. al., 2004). Possible reasons of this problem include: change of emission 
patterns, modifications of land use, annual variations in meteorological conditions, 
and global warming. The objective of this study is to investigate the effects of the 
annual variations in meteorological conditions on long-term ozone trends in southern 
Taiwan. 
 
It is well known that variations in meteorological conditions at different time scales 
can exert sufficiently large impacts on ozone concentrations. This makes measuring 
the effectiveness of a control program difficult. Great efforts have been made to 
separate the effects of meteorological conditions from the effects of emission 
reductions and other factors (Bloomfield et al., 1996; Cobourn and Lin, 2004; Cox 
and Chu, 1993, 1996; Fiore et al., 1998; Rao et al., 1995; Xu et al., 1996). Many 
statistical methods have been employed to investigate this problem, but no one 
method is most appropriate for all purposes and all meteorological scenarios 
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(Thompson et al., 2001). In this research, we used robust MM least square method 
and multilayer perceptron (MLP) artificial neural network (ANN) for analysis. 
For linear regression model, ozone concentrations are expressed as linear functions 
of observed meteorological parameters and other factors. This approach is 
straightforward, however, it assume simple linear and additive associations between 
the variables are inadequate to capture interactions and nonlinearities in the ozone 
response. On the contrast, the ANN methods are more complex and flexible than 
linear statistical models. They are able to model strongly non-linear relationship 
between meteorological parameters and ozone concentrations. The main reason for 
selecting the MLP model for air quality prediction was its accuracy and reliability, 
compared with other available ANN model categories. 
 
In this study, two methods were used to estimate the meteorologically-adjust ozone 
trends in Taiwan. In addition, the following factors were considered in this study: 
 
(1) Because Daily maximum 1 h average concentration is the current ambient air 

quality standards adapted by many countries, trends associated with daily 
maximum 1 h concentrations are the focus of most statistical assessments. 
However, as noted by USEPA, daily maximum 8 h concentrations is also an 
important parameter from the aspect of health. Thus, two dataset (1 h and 8 h 
ozone concentrations) will be considered. 

 
(2) In the past, the so called “single-site models” were used. This approach models 

the relationship between ozone and meteorological variables measured at the 
same site (Gardner et al., 2000; Thompson et al., 2001). The formation of ozone 
in the troposphere is a complex process, involving regional transport of ozone 
and its precursors. Hence, regional normalization models may be superior to 
single-site models. Thus, in this study we clustered of sites having similar O3 
concentrations into same group by a hierarchical divisive clustering procedure. 
Six groups were considered. 

 
2. METHODS 
 
2.1 Linear regression model 
A simple linear regression model was used in this study. It can be expressed as: 
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where α , β , a, b and ci are coefficients to be determined by the regression procedure. 
The input variables include: Y a real number to represent year interval, 365/2π=k   
the wave number, t the time in days starting from beginning of each year, M the 
meteorological parameters. Various combinations of meteorological variables were 
tested to determine the most appropriate form of the model. The meteorological 
parameters actually used in this study are shown in Table 1. 
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Eq. 1 consists three components: the long-term trend caused by anthropogenic 
emission change ( Yβ ), the seasonal term (asin(kt)+bcos(kt)), and meteorological 
effects. The coefficient β  represents the slope of the long-term trend. As mentioned 
before, six regions were considered and two O3 concentration targets were tested for 
each region. Hence, a total of 12 different ozone dataset were considered. 
 

Table 1 input meteorological parameters 
________________________________________________________________ 

Ave. of surface wind speed at 11:00 and 14:00 LST 
Ave. of u-components at 11:00 and 14:00 LST 
Ave. of v-components at 11:00 and 14:00 LST 
Ave. of surface temperatures at 11:00 and 14:00 LST 
Ave. of surface relative humidity at 11:00 and 14:00 LST 
Ave. of cloudiness at 11:00 and 14:00 LST 
Change of 850mb height between 02:00 and 08:00LST 
Change of temperature at 850mb between 02:00 and 08:00LST  

________________________________________________________________ 
 
Two regression models were run for each data set. The first model discards the 
meteorological parameters and obtains trends that are unadjusted. The second model 
considers all terms in the above equation and adjusted trend can be obtained. By 
comparing these two results, we can reveal the meteorological impacts on ozone 
trends. 
 
The model was fitted using the robust MM regression technique in S-Plus (Insightful 
Co., 2001). The robust regression fit is minimally influenced by outliers in the 
dependent variables as well as dependent variable. This method is adopted because it 
has smaller RMSE than traditional linear least square method. 
 
2.2. MLP methodology  
For the MLP methodology, it is assumed that a time series of ozone O(t) can be 
expressed as the sum of a long-term trend T(t), a seasonal S(t), meteorological M(t) 
component, and error, or 
 

O(t) = T(t) + S(t) + M(t) + E(t)       (2) 
 
The seasonal component corresponds to the annual cycle cause by solar radiation, 
whilst the short-term component is associated with the variations of meteorological 
variables. The MLP ANN was used to estimate S(t) + M(t) based on daily 
meteorological and seasonal predictors. The residual R(t) is defined as O(t) minus 
S(t)+M(t), which is the sum of  the long-trend term and random errors, or 

 
R(t) = O(t) – [ S(t) + M(t)] = T(t) + E(t)     (3) 

 
The long-term trend represents trends in ozone due to precursor emission changes 
and variations in the background concentrations of some related tropospheric trace 
gases.  
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We assume that: 
 

R(t) = Yβα + + E        (4) 
 
The values of coefficients α and β were determined by a simple least square method. 
 
Three steps are needed to determine the meteorologically-adjust ozone trend in this 
approach: (1) Using MLP and input meteorological data to estimate S(t) + M(t), (2) 
compute the residual R(t) by Eq. 3, (3) estimate adjusted-trend β by Eq. 4.  
 
The feed-forward back-propagation MLP was used in this study; this model category 
will be abbreviated simply as MLP in the following. The MLP model was trained by 
using the trainbr algorithm in the MATLAB Neural network toolbox (Demuth and 
Beale, 2004). Training involves finding the set of MLP network weights, which 
enable the MLP model to represent the underlying patterns in the training data. As 
suggested by Gardner and Dorling (2001), MLP models with two hidden layers were 
used. There is no a standard way to decide the number of hidden neurons. A trial-
and-error approach was used in this study. By changing the neurons numbers in first 
and second layers, the RMSE surface can be computed. Since the RMSE do not 
change significantly if the numbers of neurons larger than 6. Hence, six neurons in 
hidden layer 1 and four neurons in hidden layer 2 were adopted (see Fig. 1). The 
transfer function in the two hidden layer nodes was the log-sigmoid and tangent 
sigmoid functions, respectively, while for the output layer nodes the unbounded 
linear function was used. 
 

 
Fig 1 The architecture of a multilayer neural network 

 
The available data were randomly divided into two subsets, training data and 
validation data. The training data is about half size of the dataset considered, the 
remaining data are used for validation. The MLP models were then trained to learn 
the relationship between the predictors and daily maximum ozone concentrations 
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using training data. Validation data set is to check the performance of the MLP 
network to determine the epoch at which training should be stopped to avoid over-
training. Typically the global minimum is not reached and a good local minimum is 
treated as an acceptable solution. We train MLP models 50 times and selecting the 
model with the best generalization performance in order to reduce the likelihood of 
local minima causing problems. 
 
Following training, the model residuals were calculated and interpreted as the 
meteorologically adjusted long-term trends and random errors. The trends were 
estimated from eq. 4 by a general least square method. 
 
3. DATA 
 
The original air quality data utilized in this study are obtained from EPA, Taiwan. 
The data consist of hourly averaged concentrations of ozone and other relevant 
pollutants collected from 16 stations in southern Taiwan over the four years from 
2000 to 2003. Meteorological data were taken from weather stations close to air 
quality monitoring sites. These weather stations were operated by Central Weather 
Bureau. The locations of air quality monitoring stations are shown in Figure 2. 
 

 
Fig 2 Locations of 16 air quality monitoring stations in southern Taiwan 

 
The ozone response variable and meteorological predictor variables are calculated on 
a daily basis. If more than 6-h of data are missing on 1 day for any weather variable 
or for ozone, then the entire day is omitted from the analysis. The missing values 
typically reduce the available data by 5-10%. Most of the missing data correspond to 
extended down times caused by maintenance or instrument malfunction. There is no 
evidence that down times are related to ozone levels, so the missing values are 
omitted. 
 
The hierarchical divisive clustering procedure was used to aggregate sites into 
several groups based on site-specific O3 concentration data. Hierarchical divisive 
methods start with all observations in a single group and proceed until each 
observation is in a separate group. As shown in Fig. 3, air quality stations were 
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classified into six groups by cluster analysis. Since monitoring stations in each group 
are similar, averaged concentrations over each region were used for analysis. 
 

 
 
Fig 3 Air quality stations were classified into six groups by ierarchical divisive 

method 
 
4. RESULTS AND DISCUSSION 
 
(1) Trends of daily maximum 1 h ozone concentrations 
 
Table 1 shows the meteorologically adjusted and unadjusted long-term components 
of the daily peak 1 h ozone time series at each region. Results including correlation 
coefficients, root mean square error (RMSE) and trend are listed in Table 1.  
 
As shown in Table 1, β values for trend only analysis are all positive (except for 
region 2), which indicates that the unadjusted ozone trends are increasing. Having 
taken the meteorological effects into account, the meteorologically adjusted trends 
(or demeteorological trends) are most likely associated with precursor emissions. It is 
noted that the demeteorological trends are smaller than unadjusted trends. The 
implication is that if one seeks ozone trend without considering the meteorological 
impact, one would end up with a trend that could misrepresent the effects of the 
emission reduction.  
 

1 2
3 4 5 6



 360

Table 1 also shows that the addition of meteorological variables to a model with only 
seasonality and trend will reduce the prediction error (RMSE) and the standard error 
of the trend estimate. The values of correlation coefficients will increase if the 
meteorological effects are considered. The R2 values ranged from 0.4 to 0.6. It is 
vary reasonable when compared with the results of other studies. 
  
In terms of RMSE or R2, as shown in Table 1, the linear regression model and MLP 
model exhibit similar levels of performance. The absolute values of the 
demeteorological trends obtained by MLP methods are smaller then that obtained by 
liner regression method.  
 
Table 1 meteorologically adjusted and unadjusted long-term statistics of the daily 
peak 1 h ozone time series at each regions 
 

Trend only 
Linear regression 

Demeteorological trend 
Linear regression 

Demeteorological trend 
MLP 

Region 

R2 RMSE β  R2 RMSE β  R2 RMSE β  

1 0.20 22.61 1.14±1.09 0.57 16.62 0.73±0.66 0.55 16.29 0.4951 

2 0.39 24.48 -0.14±0.70 0.41 20.75 -1.86±0.58 0.53 19.97 -1.4675 

3 0.16 25.63 5.95±0.66 0.44 18.30 4.38±0.52 0.59 18.03 3.5523 

4 0.36 24.54 4.46±1.02 0.59 19.57 5.72±0.68 0.53 18.73 2.999 

5 0.31 28.76 0.08±1.09 0.57 22.81 -0.77±1.02 0.58 21.14 -0.3475 

6 0.43 26.27 1.24±0.89 0.43 22.08 -0.53±0.64 0.56 20.82 0.0251 

 
We can use two models developed in this study to ‘predict’ the daily peak ozone 
concentration for six regions. The results are shown in Fig. 4. This figure indicates 
that the differences between observed and predicted values are significant. It implies 
that some important factors, which have significant influence on the ozone 
concentration, were not well explained by the current models. These factors may 
include the short-term variations of emission conditions. 
 
(2) Trends of daily maximum 8 h ozone concentrations 
 
Since health effects research now shows that ozone affects public health over long 
periods of time, not just during a few 1 h peak events. A new standard based on daily 
maximum 8 h ozone concentration was promulgated in USA. Now, we will exam the 
results of daily maximum 8 h ozone concentration. 
 
Table 2 is similar to Table1 except that daily maximum 8 h ozone concentrations 
were used. Since the values of maximum 8 h ozone concentrations are less than the 
values of daily peak 1-h ozone concentration, the values of RMSE and β appear in 
Table 2 are less than their corresponding values in Table 1. The correlation 
coefficients in Table 2 are larger. The β values would be reduced if meteorological 
conditions were considered. 
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Fig.5 shows the time series plots of the observed and predicted daily peak 8 h ozone 
concentrations of 2002 at six regions. The predictions of two models agree with the 
observations. 
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Fig. 4 The observed and predicted daily peak 1 h ozone concentrations of 2003 at six 
regions (blue line: least square method, red line: MLP method, x : observations) 
 
Table2 meteorologically adjusted and unadjusted long-term statistics of the daily 
maximum 8 h ozone time series at each region 
 

Trend only 
Linear regression 

Demeteorological trend 
Linear regression 

Demeteorological trend 
RBFNN 

Region 

R2 RMSE β  R2 RMSE β  R2 RMSE β  

1 0.28 18.00 1.20±0.62 0.61 13.25 0.64±0.59 0.61 12.35 0.4477 

2 0.46 18.97 0.43±0.63 0.63 15.79 -0.92±0.65 0.59 14.64 -0.5549 

3 0.34 18.59 4.30±0.76 0.64 13.68 3.66±0.60 0.63 12.97 3.1609 

4 0.40 19.22 3.91±0.74 0.43 15.68 3.56±0.41 0.58 14.15 2.6529 

5 0.44 19.50 0.11±0.71 0.64 15.69 -1.79±0.57 0.62 14.55 -0.5677 

6 0.50 19.52 1.96±0.75 0.63 16.84 0.16±0.72 0.61 14.78 0.3757 
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Fig. 5 The observed and predicted daily peak 8 h ozone concentrations of 2003 at six 
regions (blue line: least square method, red line: MLP method, + : observations) 
 
As shown in Table 1 and 2, the meteorologically adjusted trends in region 2 and 5 are 
decreased. This may attribute to the effects of emission control. However, in other 
regions the meteorologically adjusted trends still exhibit increasing tendency. Since a 
new freeway was completed and operated in 2000, we believe the patterns of 
pollutant emission will be changed due to urban sprawl. It is well known that 
concentration distributions of air pollutant change while emission patterns change.  
 
5. CONCLUSION 

 
A robust linear regression method and a MLP neural network method were used to 
separate the effect of meteorological conditions on the ozone concentrations. After 
eliminating the meteorological factor in 2000-2003, the long-term trends ( β ) 
obtained by linear regression and MLP method are decreased. In recent years, the 
meteorological conditions in Taiwan tend to increase ambient ozone concentrations.  
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