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ABSTRACT 
 
Air pollutant, monitoring using continuous samplers are carried out in most major 
urban centers in the world and generally forms the basis for air quality assessments. 
Such assessment less reliable as the proportion of data missing due to equipment 
failure and periods of calibration increases. Missing data, i.e incomplete data 
matrices, are a problem that is repeatedly encountered in environmental research. In 
this paper, we predict missing concentrations of PM10 and SO2 air pollutant from 
Istanbul Yenibosna and Ümraniye air pollution measurement stations with 
meteorological parameters: temperature, pressure, sunshine, cloudy, rainfall, wind 
speed and wind direction relative humidity etc.., from Istanbul Florya and Göztepe 
meteorological stations using CNN model.  We consider one-neighborhood relation 
and guarantee stability of CNN by choosing symmetric feedback and feed-forward 
cloning matrices of A, B.  Here, the total number of different assigned elements of 
matrices (A,B) and bias constant (I), are limited to only 11 and our air pollution 
problem is optimized by altering these 11 elements. Then, we correlate CNN outputs 
with actual measured values by using three statistical performance criteria. In this 
paper, we have measurement index of agreement (d) between 0.69 and 0.92 for all 
pollutant. CNN model for PM10 are producing considerably better predictions than 
SO2. As a result, CNN-based approaches can be considered as a compromising 
approach in air pollutant prediction.  
 
Key Words: Missing data, Air Quality, Particulate Matter (PM), Sulfur Dioxide 
(SO2), Meteorology, Cellular Neural Network (CNN). 
  
 
1. INTRODUCTION 
 
Istanbul has the risk of air pollution, since it is the most industrialized city of Turkey 
with lots of factories. The main air pollutants of Istanbul are Particulate Matter (PM), 
Sulfur Dioxide (SO2), which threaten human health and corrupt air quality.  It is 
necessary that measured continuously these air pollutants for the regional authorities. 
As the incomplete data, missing data is occur, air quality assessment is less reliable. 
Missing data are a problem that is repeatedly encountered in environmental research. 
The situation may be the result of insufficient sampling, errors in measurements or 
faults in data acquisition. Whatever the reasons, discontinuities pose a significant 
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obstacle for time-series prediction schemes, which generally require continuous data 
as a condition for their use.  
 
The substitution of mean values for missing data is commonly suggested, and is still 
used in many statistical software packages (Junninen et al., 2004). A slightly better 
approach is to impute the missing elements from an ANOVA model or something 
similar. Another approach to the problem is to use a simplistic interpolation method 
such as assuming the season’s average concentration for the particular time of day 
that is missing, or linearly interpolating between the previous and following day, in 
order to obtain continuous data sets. Neither of these methods is ideal since the 
meteorology on the missing day may have been significantly different from the days 
on which the interpolation was based, leading to unrealistic predictions (Dirks et al., 
2002).  Clearly, a complementary method is required.  
 
There are many deterministic and stochastic approaches in modeling of the air 
pollutants.  As a well-known stochastic approach, Artificial Neural Network (ANN) 
has been applied to various environmental problems since 1990 and some 
satisfactory results are obtained. In many studies, ANN is applied to predict 2SO  
concentration (Boznar et al., 1993; Mok and Tam, 1998; Saral, 1999; Chelani et al., 
2002). Perez et al. (2000) have compared the PM2.5 predictions produced by three 
different methods: multi-layer neural networks, linear regression and persistence. 
Gardner and Dorling (1998) have examined all main studies and summarized the use 
of ANN in environmental air pollution.  Kukkonen et al. (2003) have studied five 
neural network models, a linear statistical model and a deterministic modeling 
system for the prediction of urban NO2 and PM10 concentrations.  Sahin et al. (2004) 
have applied the multi-layer neural network model to predict daily CO 
concentrations using meteorological variables as predictors for the European part of 
Istanbul, Turkey. Junninen et al., (2004) have applied regression based imputation, 
nearest neighbor interpolation, self organizing map, multi-layer perceptron model 
and hybrid methods to simulate missing air quality data. In all study, it is reported 
that ANN could be used to develop efficient air-quality analysis and prediction 
models in future. But in ANN, the training process becomes more complex and needs 
long time durations as the number of weight coefficients of ANN rise up to millions 
due to the complexity of environmental study.  
 
To reduce weight coefficients, Chua and Yang (1988) have introduced Cellular 
Neural Network (CNN) in 1988. Since each cell of the CNN is represented by a 
separate analog processor and since each cell is locally interconnected to its 
neighbors by matrix A and gets a feedback from them by matrix B, this configuration 
results in a very high-speed tool for parallel dynamic processing of 2-D structures 
(Cimagalli ,1993; Guzelis and Karamahmut, 1994; Uçan et al., 2001; Grassi, 2002). 
 
In this study, we have applied CNN to predict the daily mean missing concentrations 
of PM10 and SO2 pollutants in the Yenibosna and Ümraniye-Istanbul region of 
Turkey. PM10 and SO2 pollutants and meteorological parameters are measured from 
Yenibosna and Ümraniye air pollution monitoring stations, and Istanbul-Florya and 
Göztepe meteorological stations.   
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2. MATERIALS AND METHODS 

 

2.1. Study Area and Data 
The study area is in Istanbul metropolitan city, which is located 41oN and 29oE. The 
Bosphorus channel separates this city into two parts, the European and the Asian 
side. The total area of the all parts of city is about 5700 km2. More than 12 millions 
people are living and more than 40 % of the heavy industrial activities of Turkey are 
located in Istanbul. For this reason, air pollution problems are important in Istanbul. 
For this reason, air pollution problems are important for this city.  Istanbul Greater 
Metropolitan Municipality, Directorate of Environmental Protection (IGMM-DEP) 
has made air pollution measurements in 10 stations placed in various points of 
Istanbul considering the topography of the city since 1992. In this study, the daily 
SO2 and PM10 concentration data was measured by two stations located in Yenibosna 
and Ümraniye and the daily meteorological data was measured by two stations 
located in Florya and Göztepe as shown in Figure 1. 
 

 

 
 

Figure 1. Location of the air quality measurement stations in Istanbul and study area 
(Y-AQMS: Yenibosna Air Quality Measurement Station, Ü-AQMS: Ümraniye Air 

Quality Measurement Station). 
 
Air pollution measurement station, Yenibosna is in Bahcelievler County of the 
European side of Istanbul, and Ümraniye is in the Asian side of Istanbul. 5 % and 5.5 
% of Istanbul population is lives in Bahçelievler and Ümraniye, respectively.  In 

Y-AQMS 

Ü-AQMS 
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heating, 60 % natural gases and 40 % fossil fuel are used. Goncaloglu (2000) has 
investigated the overall industrial factories in Istanbul and emission inventory is 
listed. Our working area, Bahcelievler and Ümraniye has found to be the polluted 
county of Istanbul due to the emission ratios of SO2 and PM10 and the usage of fuel 
oil 4 and coal.  
 
In this study, the daily SO2 and PM10 data were taken by IGMM-DEP and measured 
using AF 21 M and MP 101 M sensors, respectively, produced by the Environmental 
Inc. We have evaluated data measured during 2002 and 2003 years.  The numbers of 
total data is 1460 per one air pollutant for Yenibosna and Ümraniye AQMS during 
2002-2003. The monitoring data is designed to meet the requirements of training and 
testing CNN.  
 
The climate of Istanbul is of Mediterranean type. The summers tend to be hot and 
winters are cold and wet. The Bosphorus, Marmara and Black Sea influence the 
climate of Istanbul. Here, the General Directorate of the Turkish State 
Meteorological Services (GDTSMS) in Istanbul provided the daily meteorological 
data. There are 17 meteorology stations in various points of Istanbul. We have used 
Florya in European side and Göztepe in Asian side Meteorological Stations data 
because of its being close to our working stations, Yenibosna and Ümraniye. To 
predict the missing air pollutant concentration, the meteorological parameters are 
used and their notations and daily statistical evaluation during 2002-2003 shown in 
Table 1.  
 

Table 1. The minimum, mean and maximum values of meteorological model 
parameters during 2002 and 2003 years. 

Parameters Notations Units Minimum 
F-AQMS  G-AQMS 

Mean 
F-AQMS  G-AQMS 

Maximum 
F-AQMS  G-AQMS 

Temperature T oC -2.2              -2.2 14.7             14.7 31.2                32 
Wind Speed WS m/s  0.3                0.2 2.2                  2.5 6.2                 7.3 
Sunshine S hour  0                   0 6.7                  6.3 13.8              12.9
Rel. Humidity RH % 43.3              38.7 72.2              74.8 95.7                 96
Pressure P mbar 990.9          988.8 1012.5      1012.6 1031.4      1032.7
Cloudy  C m 0                        0 4.4                  6.3 10                    10
Wind Direction WD North (N), South (S), 

West (W), East (E) 
WSW - NNW 

Rainfall R mm 0                        0 1.5                  1.7 31.8              61.9
F-AQMS: Florya Air Quality Measurement Stations, G-AQMS: Göztepe Air Quality Measurement Stations,  
 
 2.2. Cellular Neural Network (CNN) 
Most neural Networks fall into two main classes: (1) Memoryless Neural Networks 
and (2) Dynamical Neural Networks. As in Hopfield Networks and Cellular Neural 
Network (CNN), Dynamical Neural Networks have usually been designed as 
dynamical systems where the inputs are set to some constant values and the path 
approach to a stable equilibrium point depends upon the initial state. A CNN is 
composed of large-scale nonlinear analog circuits, which processes signals in real 
time (Chua and Yang, 1988). Like cellular automata, the CNN is made of a massive 
aggregate of regularly spaced identical circuits, called cells, which communicate 
with each other directly only through their nearest neighbors (Figure 2 and 3). 
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Adjacent cells can, therefore, interact directly with each other. Cells not directly 
connected together affect each other indirectly because of the propagation effects of 
the continuous-time dynamics of CNN. An example of a two-dimensional (2-D) 
CNN is shown in Fig. 2. Now let us define the neighborhood of C(i,j). 
 
 

 

Figure 2. A 2-D cellular neural network. The circuits size 3x3. The link between cells 
(ellipse) indicates interactions between the linked cells. 

 

We consider a cellular neural network, which consist of M line and N column (MxN). 
In this structure ith line and jth column are named (i,j) cell and explained as C(i,j). 
Figure 3 shows the neighborhoods of the C(i,j) cell (located at the center and shaded) 
for neighborhood of first second and third (r=1,2,3). In addition, the neighborhood 
has the property of symmetry (if C(k,l) ∈ Nr(i,j, C(i,j) ∈ Nr(k,l) ). The r-
neighborhood of a cell C(i,j) in a cellular neural network is defined by:  

 

Nr(i,j) = {C(k,l)⏐max (⏐i-k⏐, ⏐j-l⏐≤ r,                1≤ i ≤ M ; 1≤ j ≤ N}  
 (1) 

 

 

 

 

 
 

Figure 3. The neighborhood of cell C(i,j) for r = 1, r = 2 and r = 3, respectively. 

 

Cells are multiple-input single-output nonlinear processors described by one, or one 
among several different, parametric functional. A cell is characterized by a state 
variable, which is generally not observable as such outside the cell itself. It contains 
linear and nonlinear circuit elements, such as linear resistors, capacitors and 
nonlinear controlled sources (Fig. 4). Every cell is connected to other cells within its 
neighborhood. In this scheme, information is only exchanged between neighboring 
neurons and this local information characteristic does not prevent the capability of 

            r =1                                        r = 2                                           r = 3 

C(1,2) C(1,3) C(1,1) 

C(2,1) C(2,2) C(2,3) 

C(3,3) C(3,1) C(3,2) 
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obtaining global processing. The CNN is a dynamical system operating in continuous 
or discrete time.  

 

 

 

 

 

 

Figure 4. Functional block diagram of a CNN cell. 

 
Cells can be characterized by a functional block diagram that is typical of neural 
network theory: Fig. 4 depicts a two-stage functional block diagram of a cell, 
composed of a generalized weighted sum (in general nonlinear with memory) 
integration, output nonlinear function / functional (Cimagalli, 1993; Albora et al., 
2001). Data can be fed to the CNN through two different ports: initial conditions of 
the state and input u. Bias value I may be used as a third port.   

 

A general form of the cell dynamical equations may be stated as follows:  

 

I  (t)u k,l)j;B(i,  (t)k,l)yj;A(i,  (t)-x
dt
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where; x, y, u, I denote respectively cell state, output, input, bias and j and k are cell 
indices. CNN parameter values are assumed to be space-invariant and nonlinear 
function is chosen as piece-wise linear (Fig. 4). A, B and I, the cloning matrices, are 
identically repeated in the neighborhood of every neuron.  

∑ ∫
Output y 
Input u 
State x 

               1 
                       1 
                        
-1                       
               -1 

∆tx x y 
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The network behavior of a CNN depends on the initial state of the cells, namely the 
bias I, and the weights values of A and B matrices, which are associated with the 
connections inside the well-defined neighborhood of each cell. CNNs are arrays of 
locally and regularly interconnected neurons, or, cells, whose global functionality are 
defined by a small number of parameters (A, B, I) that specify the operation of the 
component cells as well as the connection weights between them. CNN can also be 
considered as a nonlinear convolution with the template. Since their introduction in 
1988 by Chua, the CNN has attracted a lot of attention. Not only from a theoretical 
point of view these systems have a number of attractive properties, but also 
furthermore, there are many well-known applications like image processing, motion 
detection, pattern recognition, simulation. Albora et al., 2001 applied this 
contemporary approach for the separation of regional and residual magnetic 
anomalies, on synthetic and real data. Here, we have predicted air pollution 
parameters using CNN approach.  To evaluate the prediction results of CNN, 
statistical performance indices have calculated and shown in Section 3.   

 

2.3. Statistical Performance Indices 
In this study, in order to objectively evaluate model prediction, three statistical 
performance indices are computed: the mean bias error (Bias), correlation coefficient 
(R), and the index of agreement (d). These are based on the deviations between 
predicted and original observation values. Bias is the degree of correspondence 
between the mean prediction and the mean observation. Lower numbers of Bias are 
the best and values of bias <0 indicate under-forecasting. Evaluation can also be 
undertaken by considering measures of agreement, such as the Pearson product 
moment correlation coefficient (R) values. The index of agreement, bounded, relative 
measure that is capable to measure the degree of which predictions are error-free. 
The denominator accounts for the model’s deviation from the mean of the 
observations as well as to the observations deviation from their mean. In a good 
model d and R should approach to one (Kukkonen et al., 2003). All these indices are 
formulated as follows;  
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where, Oi

 and Pi are the observed and predicted pollution values, respectively, in i = 
1., 2., ..., N days,  O  is the mean of the observed times series and N is the total 
observation number. In addition, σo, σp standard deviations of the observed time 
series (O) and predicted time series (P) have been calculated. 

 



 1574

3.  RESULTS AND DISCUSSION  
 
In this paper, missing PM10 and SO2 concentration values are predicted using 
Cellular Neural Networks in Istanbul–Yenibosna and Istanbul-Ümraniye air 
pollution station. We have estimated two data sets for SO2 and PM10. One of them, 
data set of PM10 and SO2 is formed missing data percentage of 50, another them; it is 
formed missing data percentage of 20. %50 and %20 of daily mean observed SO2 
and PM10 concentrations are changed average concentration value of all SO2 and 
PM10 data, respectively. These missing data is predicted using CNN model. 

 

We have calculated correlations between meteorological and pollution parameters by 
statistical package program SPSS11.5.  In our CNN model, the elements of input (u) 
and target (T) matrices are shown in Fig.5.  The elements of input matrix consist of 
20% and 50% missed data of SO2 and PM10 to be predicted. We arrange u and T 
matrices’ elements regarding to correlation coefficient information to improve 
prediction performance.  After training CNN using u and T matrices, we have 
obtained A, B and I templates for each study as shown in equation 8-15.   
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Figure 5. Input (u) and target (T) matrices of our CNN model.(AP: Air Pollutant, SO2 
and PM10; MAP:Air Polutant with missing data). 

 

To predict 50 % missing PM10 concentration in Yenibosna:  
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To predict 20 % missing PM10 concentration in Yenibosna:  
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To predict 50 % missing SO2 concentration in Yenibosna:  
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To predict 20 % missing SO2 concentration in Yenibosna:  
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To predict 50 % missing PM10 concentration in Ümraniye:  
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To predict 20 % missing PM10 concentration in Ümraniye:  
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To predict 50 % missing SO2 concentration in Ümraniye:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

  0.0142     0.0182-     0.0277
0.0157     1.1553       0.0157
0.0277     0.0182-     0.0142

A   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.0271-     0.0273-   0.0271- 
0.0272 -     0.0273-    0.0272-
0.0271-     0.0273-    0.0271-

B      [ ]0273.0−=I                

(14) 

 

 

 



 1576

To predict 20 % missing SO2 concentration in Ümraniye:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

  0.0402     0.0131     0.0289
0.0276     1.2505     0.0276
0.0289     0.0131     0.0402

A   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.0429-     0.0433-   0.0433- 
0.0433 -     0.0433-    0.0433-
0.0433-     0.0433-    0.0429-

B      [ ]0433.0−=I                

(15) 

 
Here, neighborhood (r) is chosen as 1. To guarantee stability of CNN, templates are 
symmetric. We have replaced the template values obtained in Equation (8-15) to 
Equations (2-3).  Then we have compared CNN predicted and actual {PM10 and 
SO2} concentrations as in Figure 6 and 7 during 2002 and 2003.  

 
Model results have also been checked by calculation five different statistical indices, 
given in Equation 5-7, which are based on the deviations between predicted values 
and original observations. The final results of statistical model evaluation for SO2 
and PM10 in Yenibosna and Ümraniye during 2002 and 2003 years have been 
presented in Table 3. For both pollutants, the results have been presented separately 
for each Air Quality Measurement Stations and each percentage of missing data. For 
PM10 in Yenibosna, index of agreement (d) of CNN is 0.69 and 0.92 for missing data 
percentage of 50 and 20, respectively. We have measured similar results for PM10 in 
Ümraniye,  d is 0.74 and 0.91 for missing data percentage of 50 and 20, respectively. 
For SO2 in Yenibosna and Ümraniye, d and r are the same value, 0.85 and 0.73, 
respectively, for missing data percentage of 20. For PM10 in Yenibosna and 
Ümraniye, Bias value is positive and for SO2, it is mostly negative. This result has 
demonstrated that the prediction concentration of PM10 is less than observed PM10 
concentration. However, the prediction concentration of SO2 is high than observed 
SO2 concentration. Table 2 and Figure 6,7 has demonstrated that CNN model for 
PM10 are producing considerably better predictions than SO2.  Furthermore, CNN 
model for missing data percentage of 20 are producing better predictions than 
missing data percentage of 50.  
 

Table 2:  Model performance indices for the CNN model. The results differ by the 
missing data percentage, Yenibosna and Ümraniye air quality stations and PM10 and 

SO2 pollutions. 
Statistical performance indices AQMS AP MDP 

(%) Max. Min.  Avrg. σ r d Bias 
50 218 13 47 36,1 0,57 0,70 16,3 

P M
1

20 211 15 59 23 0,87 0,92 4,2 
50 170 0,3 26 26,1 0,67 0,81 2,76 

Y
en

ib
os

na
 

 S O
2 

20 148 2,2 30 25,5 0,73 0,85 -0,91 
50 279 10 49 34,3 0,54 0,74 6,87 

PM
10

 

20 244 2,5 54 24,3 0,86 0,91 1,95 

50 164 5,5 21 30,3 0,67 0,73 -2,43 

Ü
m

ra
ni

ye
 

SO
2 

20 170 6 21 24,3 0,73 0,85 -2,54 
           AQMS: Air Quality Measurement Stations, AP: Air Pollutans, MDP: Missing data percentage 
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4. CONCLUSION 
 
In this paper, main air pollutants of Istanbul, Particulate Matter (PM), Sulfur Dioxide 
(SO2) are estimated using CNN approach.  There are many studies for air pollutant 
modeling. One of the frequently used methods is Artificial Neural Network (ANN).  
In ANN, the training process time increases as the problem becomes complex.  In 
1988, Chua and Yang have introduced Cellular Neural Network (CNN) as a new 
non-linear, dynamic neural network structure.  In CNN, the correlations between 
neighbor pixels are modeled by cloning templates with limited number of elements 
in solving complex problems.  
 
In previous similar study, index of agreement value has changed between 0.20 and 
0.80 for other model techniques, for example Multilayer Neural Network, Regression 
Analysis etc. (Junninen et al., 2004). In this paper, we have measurement d between 
0.69 and 0.92 for all study and for all pollutant. The elements of climatic system are 
commonly nonlinear, irregular and highly complex. As a result, CNN-based 
approaches can be considered as a compromising approach in air pollutant 
prediction.  
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Figure 6: Two years of observed and CNN model predicted daily mean PM10 and 

SO2 concentrations at the Yenibosna AQM Stations. 
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Figure 7: Two years of observed and CNN model predicted daily mean PM10 and 
SO2 concentrations at the Ümraniye AQM Stations. 
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