
Proceedings of the Third International Symposium on Air Quality Management at Urban, 
Regional and Global Scales. pp. 690-698, 26-30 September 2005, Istanbul – Turkey 

 

690 

QUANTITATIVE ASSESSMENT OF AIR QUALITY THROUGH 
MODELING OF POLLUTION 

CONCENTRATION IN ATMOSPHERE WITH KNOWN 
SURFACE VALUE IN CIRCULAR REGIONS 

 
V.P. Saxena and H.S. Jat* 

 
School of Mathematics and Allied Sciences, Jiwaji University, Gwalior – 474011, 

India  saxena_vp@rediffmail.com 
*Department of  Mathematics, M.P. College of Technology, Gwalior– 474006, India 

drhsjat@yahoo.co.in 
 
 
ABSTRACT  
 
 This paper deals with the mathematical model of atmospheric pollution 
problem when the a near circular ground source emits specific pollutant species 
vertically upward in still air. The eddy diffusivity is assumed to vary continuously in 
upward direction and attains very small value at some given height. The values of the 
concentration distribution are monitored at the ground and at the boundary points of 
the region under consideration. The Mathematical model, which is expressed in 
terms of partial differential equation, is solved in exact form yielding Bessel 
functions and Legendre polynomials. The numerical values of the concentration are 
computed for certain specific cases.    
 
Key Words : Air Pollution, Mathematical Modeling, Numerical Computation, Initial 
and Boundary Conditions, Concentration Distribution.                       
 
1. INTRODUCTION  
 
 Many of the urban air pollution are related with near circular area source and 
vertical and radial distribution above the surface. The vertical distribution is 
influenced by the variation of eddy diffusivity which varies in vertical direction 
(Seinfeld, 1986) almost parabolically. This paper considers pollution distribution in 
an atmosphere with circular symmetry incorporating the above situations. Solution of 
the mathematical model is presented using Laplace transform in terms of modified 
Bessel functions and Legendre polynomials (Rainville, 1960). 
 

Earlior, attempts have been made to solve mathematical models of pollution 
by simplified approach (Khan (1992), Kakamari (2001)) and also by advanced 
method for difficult problems (Saxena, Juneja, Aslan and Durukanoglu (2001)), 
(Tokgozlu,  Saxena, Ocak and Erturk(2001)). Closed form solutions have also been 
obtained in certain cases (Saxena, Jat, Miri and Juneja (2003A)), (Saxena, Jat, Miri 
and Juneja (2003 B)), (Saxena and Juneja (2003)).           
 The mathematical solution of air pollution model obtained in this paper  
provides a closed from expression which can give air quality and pollution status at 
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any desired interval and at any location in vertical as well as in horizontal direction. 
As indicated above the eddy diffusivity of the substances present is assumed to vary 
in vertical direction in a particular fashion so that it reduces to minimum value at a 
particular height. The numerical computation is carried out for a particular situation 
of initial air quality to obtain pollution density in the whole region for different 
values of time. However, more result can be obtained for other situations also. At the 
same time model can be utilized for manipulating the air quality for a given 
pollutant.         
 
 
2. MATHEMATICAL FORMULATION 
 
  We consider a near circular ground with known concentration of 
pollutant all over and a cylindrical region above it which is equally polluted initially 
but the pollution level falls down gradually. The concentration beyond this resign is 
supposed to be estimated vertically.   
    

The governing partial differential equation and the allied conditions can be 
stated as: 
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where t is time, C is the concentration of pollutants and Kr and Kz are the turbulent 
diffusion coefficients along radial direction r and z – directions respectively.   
 
We take 
 

C (r, z, o) = L, C ( r, o, t) = L and C (a, z, t) = g(z,t)   (given) 
Here   a = ground radius and L is a fixe value of C. 
 
Now we use the transformation 
 
 y ( r, z, t) = L – C ( r, z, t) 
 
Then equation (1) becomes 
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and condition becomes 
 

y ( r, z, o) = 0, y ( r, o, t) = 0 and y ( a, z, t) =  L – g ( z, t) 
 

Further, assuming variable diffusivity in vertical direction reaching lowest value at 
the top (z=H), we take  
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Kz = λ ( 1- z2/H2)  
 

Also, we assume 
 

Kr = K, and z/H = u 
 

Accordingly 
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The initial and boundary conditions are  
 

y ( r, u, o) = 0, y ( r, o, t) = 0 
y ( a, u, t) = G (u,t)         

(4) 
 
 

3. SOLUTION  
 
The Laplace transform is defined as 
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where 0 < σ  < 1. Also we know that 
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Hence with the help of initial condition (4), the equation (3) takes the form 
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with the conditions 
 

ℒ {y(r,o,t)} = 0       (9) 
ℒ  {y (a, u,t)} = G(u) 



 693 

 
 
where  
 

G(u) = ℒ {G(u,t)} 
 

 
Using the properties of Legendre’s polynomial (Rainville(1962)), we have that if  
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We also know that the Legendre’s polynomial P2n+1(u) is solution of the differential 
equation 
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Hence using equation (10) and (11), we get equation (8) in the form 
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Equation (13) is known as Bessels equation and its solution is given as 
 

yn = AI0 (ξnr) + B Ko (ξnr)                
(14) 

 
But as  r          0,    ∞→)(0 rK nξ  
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Therefore B = 0 and from (5) 
 

A = Yn/ I0 (ξna), 
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Substituting in (14), (11) and (6), we get 
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But  
 

y ( r, z, t) = L – C ( r, z, t) 
 

Therefore  
 

C (r, z, t) = L – y (r, z, t) 
 

and 
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4. SPECIAL CASE 
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Now as a particular case, we take 
 

C (a, z,t) = z
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Here 
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where αn are roots of the equation   J0(aα) = 0.  

Hence evaluating the integral on the right hand side of (20) with the help of 
residue method, we obtain 
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5. NUMERICAL COMPUTATION  
 
On taking H = 1 km, we get 
 

C(r, z, t)  =  L [1-z + z (1.3915) exp (-25.127 kt) x J0 (4.809 r) 
- z (1.0440) exp (-123.881 kt)  J0 (11.040 r) 

      +   z (0.8512) exp (-301.5322 kt) J0 (17.307 r) 
- z (0.7275) exp(-558.1579 kt) J0(23.583 r) t            (24) 

Here 
 
  A = .5 km 
  
 
The numerical values of 1C  (r,z,t), where  
 

1C (r,z,t) = C(r,z,t)/L 
 

 for different r and at the different time values are shown in the Table-1 and Table-2.  
 
 
Table 1. The concentration distribution at different radius values and different height 
where t = 60 sec. and k = 3.5x10-3 km/gm/sec. 

 
z   \r 0.0 0.1 0.2 0.3 0.4 0.5 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 .9629 .9596 .9650 .9340 .9193 .9001 
0.2 .9258 .9192 .9300 .8687 .8386 .8003 
0.3 .8888 .8788 .8950 .8031 .7579 .7005 
0.4 .8517 .8384 .8600 .7375 .6772 .6007 
0.5 .8147 .7980 .8251 .6719 .5966 .5009 
0.6 .7776 .7576 .7934 .6062 .5159 .4010 
0.7 .7405 .7173 .7551 .5406 .4352 .3012 
0.8 .7035 .6769 .7201 .4750 .3545 .2014 
0.9 .6664 .6365 .6852 .4094 .2738 .1016 
1.0 .6294 .5961 .6502 .3438 .1932 .0018 
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At a = .5 km 
H = 1 km; 

At t = 60 sec. 
k = .001 km/gm/sec.= 1.0 × 10-3 × km/gm/sec. 

 
 

Table 2. The concentration distribution at different radius values and different height 
where t = 60 sec. and k = 1.0x10-3 km/gm/sec. 

 
 z \  r 0.0 0.1 0.2 0.3 0.4 0.5 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 .9307 .9288 .9307 .9157 .9087 .9000 
0.2 .8614 .8577 .8614 .8315 .8174 .8001 
0.3 .7922 .7865 .7921 .7473 .7261 .7002 
0.4 .7229 .7154 .7228 .6631 .6348 .6003 
0.5 .6537 .6443 .6536 .5789 .5435 .5003 
0.6 .5844 .5731 .5843 .4947 .4522 .4004 
0.7 .5152 .5020 .5150 .4105 .3609 .3005 
0.8 .4459 .4309 .4457 .3263 .2696 .2006 
0.9 .3767 .3597 .3765 .2421 .1783 .1006 
1.0 .3074 .2886 .3072 .1578 .0870 .0007 
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