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ABSTRACT

On the basis of generalization of Ragland’s (1976) method, it is determined the
maximal and critical (worst-case) pollutant parameters from Gaussian dispersion plume

model. It is used Brigg’s formula for effective height and dispersionso,, o, which are

y 9
approximated with power laws.

It is considered the effects of gravity deposition, inversion and the dependence of
the wind speed on the height. At these conditions general analytical expressions are derived
for urban and rural regions for the critical concentration and its location, critical wind speed
at ten meters height, the “minimal” stack height for newly planned industrial sources, etc.
The meteorological conditions are parameterized in terms of the Pasquill-Turner stability
classes A-F.

It is considered and some of these problems with application to non-Gaussian
diffusion model.

The result can be used to estimate and standardize the worst-case ambient air
concentrations from continuous sources and for determination of the meteorological
conditions at which they occur.

Key Words: Critical Parameters, Stability Classes, Deposition, Inversion, Gaussian
and non-Gaussian Model.

1. INTRODUCTION

The maximal concentration obtained from the stack of a given industrial region
depends mainly on the stack parameters and the meteorological conditions. To find
the critical (maximal of the maximal) concentration, the distance, wind speed and the
stratification conditions under which it occurs is more important task. The critical
parameters allow to estimate the worst-case ambient pollution conditions, to
determinate the stack height of newly planned industrial sources, and also for
evaluation of the environmental impact of already existing sources.

Basic method for determination of the critical parameters at power laws for
the dispersions and constant with the height speed gives Raglang (1976). Here we
will extend the application of this approach considering some more complex
diffusion and meteorogical conditions and actualized data for the dispersions and the
effective height of the source. On the basis of power law approximation of the well
known dispersion curves of Briggs for o,(x) and o (X), it appeared to be possible

to obtain analytical expressions for the critical parameters for a relatively wide range
of diffusion and meteorological conditions.
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2. FORMULATION OF THE PROBLEM

Let’s use the Gaussian pollution distribution formula, from source situated in
the pointx=Yy=0. The ground level (z=0), concentration C along the plume

centerline (y =0) is given by:

C= Lexp[— H 2/20'Z]
Jyoyo,

(1)

where Q is emission rate, U is the wind speed at the effective stack heightH . The

quantity H is calculated according Briggs formula (see Hanna, 1982).

H =hs +Ah,Ah=FU ',

)

where hg is the geometric stack height, Ah is the plume rise, U; =U (z = hg ), F is

characteristic technological parameter, | is parameter with value 1orl/3 (see table.1).
Wind profile U(z) is given as:

U(z)=U;o(z/10)"
(3)

where U, is the wind speed at standard level 10m and the parameter m depends on

the Pasquill stability classes (Hanna, 1982), see table.1.
Taking into account (3) we receive the following expressions for U andUg:

HY)" hy \"

Uy EU(Z = H):Us — -Us EU(Z :hs):UIO —
hg 10

(4)

For dispersion parameterso, (X), oy (X), it is used the well known formulas of

Briggs. In the present work they are approximated with enough precision with the

convenient for work power laws:

o, (x)=ax", o, (x)=cx?,

()

where the approximation coefficients a,b,c,d are given in table 1.

Tablel. Values of the used parameters for calculation for rural and urban regions.

Z0,=0.03m - Rural Zo=1m - Urban
l. |m a b c d 1 m a b c d 1
0,17 10,20 |1,00 |036 092 |1 0,06 [008 |1,15 [142 |0,76 |1
0,17510,12 | 1,00 |0,34 |0,89 |1 0,07
0,2 0,30 [ 0,79 |025 0,87 |1 0,075 1020 | 1,00 |1,32 |0,72 |1

0,27 10,76 [0,57 [0,20 | 0,86 |1 0,13 1091 (0,72 |1,14 |0,70

0,39 1,04 047 [026 080 |1/3 1033 |093 |0,69 |087 |0,69
0,61 |L,I5 10,39 [034 0,73 |1/3 10,54

o g |QE| > A

507




2.1 Maximal parameters and normalization procedure

Differentiating (1) by X, taking into account (5), and nullifying the obtained
expression, leads to the following relation for distance X, at which the surface

concentration has maximum(Ragland, 1976):

1/2b
Xm =k HYP kg = | ——
mo ' a%(b+d)
(6)

The dependence of X, on H ( taking into account the parameters of table.1.)
is demonstrated in Fig.1. Inserting (6) in (1), taking into account (4) and (5), we

define the maximal surface concentrationC,, :
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m b+d
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Figure 1. The dependence of X, on H at different stability classes for rural and

urban region.
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Figure 2. Same as in Fig. 1, but forém .
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On Fig.2 is demonstrated the dependence of CNIm =Cp/ (Q /7J 10) on H for rural and

urban region.. It can be seen that C m 1s greater for urban region because of the more

intensive mixing turbulent processes over it. Using the so determined maximal
parameters X, andC, and considering (5), the surface concentration (1) can be

normalized:
Cs = expﬁ(‘2l’)exp{_ 2—2} ,
e X

where C, =C/C,,, X =(X/Xy)?, r=(1/2)1+d/b). The dependence of Cion X
for different stability classes is presented on Fig.3
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Figure 3. Dependence of the normalized surface concentration Cg =C/C,, on

dimensionless distance X = (X/Xy, )b at different stability classes

2.2 Critical parameters

A great practical interest is the finding of a critical value U, , at which for

all meteorological conditions, the concentration C,, is maximized. Taking into
account (2), (4) and differentiating C, from (7) by U, and setting the obtained

expression equal of zero (condition for extremum), the following expression of
critical wind velocity value Uy, can be obtained:

el
Uiger = FM10™Kk g 1,
(8)
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where ks =|(m+k)—1,k=1+%.
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Figure 4. The dependence of the critical speed U, on hg at different stability
classes for rural and urban region.
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Now substituting (8) in (6), taking into account (4), we obtain the critical
distance X at which C,,, is realized:

. 1/b
xmcr:k1(1+k—] hé/b.

3
9)
Considering (8), (9), (2), (4) from (7), we determine the critical (maximal of the
maximal) surface concentrationC ., :
b+d

| b+d -m-——
Croy =22 nY” h_% 1+ i k!
mCI’_ﬂ_kltH_d = S k3 3
(10)

On Fig.4-6 are presented the dependence of critical parametersU ocr, Xmer
and Gmcr on p_at selected stability classes A, B, C, D at which it is more likely to

form critical condition for high stack sources.
Let’s now determine the so called stack height of a planned new source hsp

so, that at any meteorological conditions the surface pollution concentration does not
exceed the Limit Admissible Concentration (LAC)-C|sc ( for given pollutant.)

i.e. Cmcr = CLAC .
bl
ms2+d [b-bl-bd

b+d
7 1 K 1 b
hsp = CLAC6FI/ L—[I—I—k_]
2 3

11

(n Here we will give only qualitative analyze of some calculated critical
parameters ( because of the limit space) for high (hg €120-320m), strong
overheated (AT, €100-160K®), with diameter (De5-12m), emission
speed. (Vi € 6—20m/s) and emission of SO, (0.1-10kg/s ) sources. The respective
critical parameter are in the range U,o, €4—9m/s, corresponding for classes

C-D, Cper €(1.3-4.5)C pc and Xy €4—40km.

2.3 Effect of gravity deposition

In the case with gravity deposition velocity W, formula (1) turns to the form (see
Wark and Warner 1976):

¢ :ﬁcyo—z%[—m i) 20,
(12)
H U H\™
here Wy = wy,/U . U = (1/H) U (2)dz = 12 [ 1
where W, WO/ > (/ )-([ (Z)Z 1+m(10j
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Applying similar procedure as at the determination of (6) (atw, = 0), but taking into

account (12), now we obtain the following algebraic equations for determination of
Xmw 10 the case of considering gravity deposition:

a?(b+d)x20, +W,(2b —1)HXy + Wa (1—-b)x2, —bH?2 = 0.

(13)

Equation (13) can be easily numerically integrated. Here we will limit to the cases
b =1andb =1/2, at which (13) becomes a quadratic equation which have analytical
solution. We will note that most of the values of b are in the range 0.5-1. At b=1/2

(around that value approximately is related the stability classes D, E, F at rural
region) the solution of (13) is:
2

Ximw = XimP1,P1 = l+m >

(14)

where x1,, is given with (6) at b =1/2. Obviously at w, =0 (14) coincide with (6).
At b=1 (the classes A, B, C approximately unites around this value), the

respective solution of (13) is:.

p=4a’/(1+2d)

1

a Wo/za(1+d)l/2 +\/(WO/2a(l+d)1/2)z +1

Xomw = Xom®2 Q

b

(15)

where X, 1s given with (6) at b =1.
Taking into account (14), (15) identically to the determination of (7)
atw, =0, we find now:

2

1 _L(r- W, H(/) 1+2d

Cimy =Cin frs fy =—e 1Bl Rl{l—zo—l o o hi=—
o, a’(1+2d)

(16)

C2mw = CZm fz,

(17)
where C;,, and C,,, are given by (7) at b=1/2 and b =1 respectively.

b

N 2
f2 1 e—Lz(Rz—(Pzz)/(/’% , R2 — |:1_\NO—¢21/2:| , |_2 =ﬁ

" i a(l+d) 2
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Figure 7. Dependence of correction deposition functions @, =Xy /Xom and
fy =Comw/Com on W, at different stability classes A, B, C for rural region.

As it can be seen from (14)-(17) the maximal characteristics Xp,, and
Cware expressed with the respective values for the case Wy, =0 and corrections

functions considering the gravity deposition. So for example the dependence of the
deposition correction functions ¢, and f, on the parameter W, and the stability

classes is shown on Fig 7. From this figure it can be seen the different degree of
decreasing of X, and respective increasing of C,,, depending on the gravity

deposition parameter W, at stability classes A, B, C.

2.4 Inversion effect

In the inversion case with gravity deposition, the ground level concentration along
the plume center line is given by:

~ 2
- [ - 2nh
C=—Q exp ——( r12|) ,
ﬂ-ayO-ZUH n=—o0 20_2
(18)

where H = H —@W,x, h, is the inversion height. The worst case will occur when the

plume rise is just up to the inversion layer (H =h, ). If we take only the first two
main terms of the series we receive for the critical concentration the expression:

Co = W%%XP[_(H —WOX)2 /20'3 ]+ exp[— (H+ VN\/OX)2 /20'3]}
(19)

In the private casew, =0, from (19) follows the received by Ragland (1976)
formula. The consideration of the gravity deposition makes more complex the

513



problem for determination of X, and C,,, . In this case for the determination of

Xmer W€ have an equation of type like (13), which can be solve numerically.

2.5 On the non-Gaussian model application

If we represent the solution of the steady-state diffusion equation for
continuous point source in PBL:

U@ V@) =2 [kz<z>f9¢j+£(k ﬂ

ox oy oz a) oyl Yoy
(20)
in the form C =C,(x,z)C,(x,y), taking into account Taylor’s frozen turbulence
hypothesis: ky = (1/2U (Z)(d 0')2, / dx), we obtain (Syrakov, Stefanova 2001):

C= CI(X’ Z)Cz(X, Y), C,= \/%O_ exp{— (y_o_—ljx)} >
y z
21)

where C, describes the vertical ( from linear source at the axis Oy), and C,- the

horizontal diffusion. The parameter R, determined according to the condition
imposed by the splitting of the problem (20):V (z)/U(z)~const, is:
V _sina+Cjcosa

R=—= , 22
U cosa-C;sina )

where U,V are the averaged with the height in PBL components of the wind
velocity, received by considering the equations of motion, C, =U./G, is the
geostrophic resistance coefficient, - angle of full turning of the wind in PBL
(between the surface and geostrophic wind). At R :O(\7:O) follows the well
known Gaussian distribution for C, perpendicular to the wind velocity. At R # 0 the
integral average turning of the wind (& = arctgR) in the whole PBL is considered
inC,. On Fig.8 is presented the parameterized, by the Pasquill stability classes,

integral turning parameter R (Syrakov, Stefanova 2001). It can be seen that with
increasing of atmospheric stability the integral effect of turning of the wind in PBL
also increases.

Py
© o o o o o o o

o B N W A~ O o N
|

K L

Figure 8. Values of integral wind turning parameter R on stability classes.
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Let’s now see the vertical diffusionC, . At power laws for U(z)andk, (z):
U(z)=a,z",k, =b,z",
(23)
Huang (1979) received the following analytical solution:

C ZQexp{— Ay (Za + Ha)} (zH)(1-n)/2 I_y[Zau (zH )a/2:|’

bkazx bk0{X bkCZZX

24)
where @ =2+m-n, v=(1-n)/a, |_, is a modified Bessel function of first kind of

order (— V), Qs the source strength, H is effective height given by (2). This solution

is detailly explored and used for determination of the statistical moments in (Brown
et al,. 1997). From the non-Gaussian solution (21), (24), at z=0,y=0 and R=0

we obtain respective expression for the surface, along the plume axis, concentration.
Considering that a, =U,;,10™" ( from the comparison of (23) and (3)) follows that
this concentration depends on U,,. From the condition for extremum about U,, and

using a procedure identical to that in paragraph ( 2.2), now we can receive analytical
expression for all critical parameters (8)-(11). For example for U,,,and X, ., we

have:
(25)
(2-n)I-1
1 1/|[ 1ja
Xmer = B"|1+—]| h, '
" hat(l-v+d) M) ®
(26)

whereM =1[m+k, /k;]-1, k; =—(1+d), k, =d(n—2)—1. These parameters are
modification of (8) and (9) for the case when it is used the non-Gaussian plum
model. The difference is that instead of &,(x) in the non-Gaussian model it’s used
k,-closure. Besides that and at the non-Gaussian model, we can determine the

respective dispersion &, (x), using the definition formula
2

(z-2) C(x,2)dz / I C(x,z)dz, where C(x,z) is the integrated by Yy concentration
0

S —y 8

C . For surface source (H =0) and R =0 for o, we have:

a \Ye
JZ(X,H=O)=11:((T//§))(bk: J ~72(x,H =0),

(27)
where T'is the Gamma function, Z(x)~ x%% is centroid of concentration distribution.
Considering the asymptotic results for U (Z)and k, (Z) (given by (23)) following by
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Monin-Obukhov similarity theory: free convection(m=-1/3,n=4/3), neutral

stratification (m ~1/7,n =1) and strong (“z-less”) stability (m = 1,n = 0), we have:
x*2 at free convection

a,(x)~ X

(28)

7/8 at neutral stratification

x"? at strong stability.

In a identical way it can be determine the quantity skewness, which appear to be
different from zero in correspondence with the non-Gaussian model (21), (24).

3. CONCLUSION

On the basis of power law approximation of the well known dispersion
curves of Briggs in the frames of Gaussian and non-Gaussian Pollution model, it had
been determined a series of main maximal and critical diffusion parameters and
meteorological conditions at which they occur characterized by the Pasquill stability
classes.

The majority of the results are given as exact analytical solutions which make
them easy to use for estimation of the worst-case ambient conditions.

In result of taking into account the integral effect of wind turning in the non-
Gaussian model it is easy to see that the maximal and critical diffusion parameters
decrease compared to this determined with the Gaussian model in the other
paragraphs.

A detail joint study of these effects together with the gravity deposition
inversion effect is in interest of a future analysis.
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