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ABSTRACT 
 
 On the basis of generalization of Ragland’s (1976) method, it is determined the 
maximal and critical (worst-case) pollutant parameters from Gaussian dispersion plume 
model. It is used Brigg’s formula for effective height and dispersions zσ , yσ , which are 
approximated with power laws. 
  It is considered the effects of gravity deposition, inversion and the dependence of 
the wind speed on the height. At these conditions general analytical expressions are derived 
for urban and rural regions for the critical concentration and its location, critical wind speed 
at ten meters height, the “minimal” stack height for newly planned industrial sources, etc. 
The meteorological conditions are parameterized in terms of the Pasquill-Turner stability 
classes A-F.  
 It is considered and some of these problems with application to non-Gaussian 
diffusion model. 
 The result can be used to estimate and standardize the worst-case ambient air 
concentrations from continuous sources and for determination of the meteorological 
conditions at which they occur. 
 
Key Words: Critical Parameters, Stability Classes, Deposition, Inversion, Gaussian 
and non-Gaussian Model. 
 
1. INTRODUCTION 
 
The maximal concentration obtained from the stack of a given industrial region 
depends mainly on the stack parameters and the meteorological conditions. To find 
the critical (maximal of the maximal) concentration, the distance, wind speed and the 
stratification conditions under which it occurs is more important task. The critical 
parameters allow to estimate the worst-case ambient pollution conditions, to 
determinate the stack height of newly planned industrial sources, and also for 
evaluation of the environmental impact of already existing sources. 
 Basic method for determination of the critical parameters at power laws for 
the dispersions and constant with the height speed gives Raglang (1976). Here we 
will extend the application of this approach considering some more complex 
diffusion and meteorogical conditions and actualized data for the dispersions and the 
effective height of the source. On the basis of power law approximation of the well 
known dispersion curves of Briggs for )(xzσ  and )(xyσ , it appeared to be possible 
to obtain analytical expressions for the critical parameters for a relatively wide range 
of diffusion and meteorological conditions. 
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2. FORMULATION OF THE PROBLEM  
 
 Let’s use the Gaussian pollution distribution formula, from source situated in 
the point 0== yx . The ground level ( 0=z ), concentration C  along the plume 
centerline ( 0=y ) is given by: 

[ ]z
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σσπ

2exp 2−=                                                                                   

(1) 
whereQ  is emission rate, HU  is the wind speed at the effective stack height H . The 
quantity H is calculated according Briggs formula (see Hanna, 1982). 
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(2) 
where sh  is the geometric stack height, h∆  is the plume rise, ( )ss hzUU == , F  is 
characteristic technological parameter, l  is parameter with value 1or1/3 (see table.1). 
Wind profile ( )zU  is given as: 

( ) ( )mzUzU 1010=                                                                                                           
(3) 
where 10U  is the wind speed at standard level 10m and the parameter m  depends on 
the Pasquill stability classes (Hanna, 1982), see table.1. 
Taking into account (3) we receive the following expressions for HU  and sU : 
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(4) 
For dispersion parameters ( )xzσ , ( )xyσ , it is used the well known formulas of 
Briggs. In the present work they are approximated with enough precision with the 
convenient for work power laws: 

( ) b
z axx =σ , ( ) d

y cxx =σ ,                                                                                              
(5) 
where the approximation coefficients dcba ,,, are given in table 1.  
 
Table1. Values of the used parameters for calculation for rural and urban regions. 
 

Z0=0.03m - Rural Z0=1m - Urban 
Kl. m a b c d l m a b c d l 
A 0,17 0,20 1,00 0,36 0,92 1 0,06 
B 0,175 0,12 1,00 0,34 O,89 1 0,07 

0,08 1,15 1,42 0,76 1 

C 0,2 0,30 0,79 0,25 0,87 1 0,075 0,20 1,00 1,32 0,72 1 
D 0,27 0,76 0,57 0,20 0,86 1 0,13 0,91 0,72 1,14 0,70 1 
E 0,39 1,04 0,47 0,26 0,80 1/3 0,33 
F 0,61 1,15 0,39 0,34 0,73 1/3 0,54 

0,93 0,69 0,87 0,69 1/3 
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2.1 Maximal parameters and normalization procedure 
 
 Differentiating (1) by x , taking into account (5), and nullifying the obtained 
expression, leads to the following relation for distance mx  at  which the surface 
concentration has maximum(Ragland, 1976): 
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(6) 
 The dependence of mx  on H ( taking into account the parameters of table.1.) 
is demonstrated in Fig.1. Inserting (6) in (1), taking into account (4) and (5), we 
define the maximal surface concentration mC : 
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Figure 1. The dependence of mx  on H at different stability classes for rural and 

urban region. 
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 Figure 2. Same as in Fig. 1, but for mC~ . 
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On Fig.2 is demonstrated the dependence of ( )10
~ UQCC mm π=  on H for rural and 

urban region.. It can be seen that mC~  is greater for urban region because of the more 
intensive mixing turbulent processes over it. Using the so determined maximal 
parameters mx  and mC  and considering (5), the surface concentration (1) can be 
normalized:  
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 where ms CCC = , b
mxxx )(~ = , ( )( )bdr += 121 . The dependence of sC on x~  

for different stability classes is presented on Fig.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Dependence of the normalized surface concentration ms CCC = on 

dimensionless distance b
mxxx )(~ = at different stability classes 

 
 2.2 Critical parameters 
 
 A great practical interest is the finding of a critical value crU10 , at which for 
all meteorological conditions, the concentration Cm is maximized. Taking into 
account (2), (4) and differentiating mC from (7) by 10U  and setting the obtained 
expression equal of zero (condition for extremum), the following expression of 
critical wind velocity value crU10  can be obtained: 
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where ( ) 13 −+= kmlk ,
b
dk += 1 . 
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 Figure 4. The dependence of the critical speed crU10 on sh  at different stability 
classes for rural and urban region. 
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Figure 5. Same as Fig.4, but for mcrx . 

0 50 100 150 200 250 300 350
0,0000

0,0005

0,0010

0,0015

0,0020  A
 B
 C
 D

hS

RURAL

0 50 100 150 200 250 300 350
0,0000

0,0005

0,0010

0,0015

0,0020

mcrC~mcrC~

 A
 B
 C
 D

hS

URBAN

Figure 6. Same as Fig.4, but for mcrC~ . 
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 Now substituting (8) in (6), taking into account (4), we obtain the critical 
distance mcrx at which mcrC is realized: 
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(9) 
Considering (8), (9), (2), (4) from (7), we determine the critical (maximal of the 
maximal) surface concentration mcrC : 
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 On Fig.4-6 are presented the dependence of critical parameters crU10 , mcrx  

and mcrC~ on 
sh at selected stability classes A, B, C, D at which it is more likely to 

form critical condition for high stack sources. 
 Let’s now determine the so called stack height of a planned new source sph  
so, that at any meteorological conditions the surface pollution concentration does not 
exceed the Limit Admissible Concentration (LAC)- LACC  ( for given pollutant.) 
i.e. LACmcr CC = : 
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(11) 
 Here we will give only qualitative analyze of some calculated critical 
parameters ( because of the limit space) for high ( mhs 320120 −∈ ), strong 

overheated ( o
s KT 160100 −∈∆ ), with diameter ( mD 125 −∈ ), emission 

speed. ( )smVs 206 −∈  and emission of 2SO  ( skg101.0 − ) sources. The respective 
critical parameter are in the range smU cr 9410 −∈ , corresponding for classes 

DC − , LACmcr CC )5.43.1( −∈  and kmxmcr 404 −∈ . 
 
2.3 Effect of gravity deposition 
 
In the case with gravity deposition velocity 0w , formula (1) turns to the form (see 
Wark and Warner 1976): 
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Applying similar procedure as at the determination of (6) (at 00 =w ), but taking into 
account (12), now we obtain the following algebraic equations for determination of 

mwx in the case of considering gravity deposition: 

( ) ( ) ( ) 01~12~ 222
00

22 =−−+−++ bHxbwHxbwxdba mwmw
b

mw .                                      
(13) 
Equation (13) can be easily numerically integrated. Here we will limit to the cases 

1=b and 21=b , at which (13) becomes a quadratic equation which have analytical 
solution. We will note that most of the values of b are in the range 0.5-1. At 21=b  
(around that value approximately is related the stability classes D, E, F at rural 
region) the solution of (13) is: 
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(14) 
where mx1  is given with (6) at 2/1=b . Obviously at 00 =w  (14) coincide with (6). 
 At 1=b  (the classes A, B, C approximately unites around this value), the 
respective solution of (13) is:. 
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where mx2 is given with (6) at 1=b . 
 Taking into account (14), (15) identically to the determination of (7) 
at 00 =w , we find now: 
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where mC1  and mC2  are given by (7) at 2/1=b  and 1=b  respectively. 
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 Figure 7. Dependence of correction deposition functions mmw xx 222 =ϕ and 

mmw CCf 222 =  on 0
~w  at different stability classes A, B, C for rural region. 

 
 As it can be seen from (14)-(17) the maximal characteristics mwx  and 

mwC are expressed with the respective values for the case 0~
0 =w  and corrections 

functions considering the gravity deposition. So for example the dependence of the 
deposition correction functions 2ϕ  and 2f  on the parameter 0

~w  and the stability 
classes is shown on Fig 7. From this figure it can be seen the different degree of 
decreasing of mwx2  and respective increasing of mwC2  depending on the gravity 
deposition parameter 0

~w  at stability classes A, B, C. 
 
2.4 Inversion effect 
 
In the inversion case with gravity deposition, the ground level concentration along 
the plume center line is given by: 
 

( )∑
∞

−∞= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−=

n z

I

Hzy

nhH
U

QC 2

2

2
2~

exp
σσπσ

,                                                                  

(18) 
where xwHH 0

~~ −= , Ih is the inversion height. The worst case will occur when the 
plume rise is just up to the inversion layer ( IhH ≡ ). If we take only the first two 
main terms of the series we receive for the critical concentration the expression: 
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 In the private case 00 =w , from (19) follows the received by Ragland (1976) 
formula. The consideration of the gravity deposition makes more complex the 
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problem for determination of mcrx  and mcrC . In this case for the determination of 

mcrx we have an equation of type like (13), which can be solve numerically. 
 
2.5 On the non-Gaussian model application 
 
 If we represent the solution of the steady-state diffusion equation for 
continuous point source in PBL: 
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in the form ( ) ( )yxCzxCC ,, 21= , taking into account Taylor’s frozen turbulence 

hypothesis: ( ) ( )( )dxdzUk yy
221 σ= , we obtain (Syrakov, Stefanova 2001): 
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where 1C describes the vertical ( from linear source at the axis Oy), and 2C - the 
horizontal diffusion. The parameter R , determined according to the condition 
imposed by the splitting of the problem (20): ( ) ( )zUzV ∼const, is: 
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where U ,V  are the averaged with the height in PBL components of the wind 
velocity, received by considering the equations of motion, 0* GUCd =  is the 
geostrophic resistance coefficient, α - angle of full turning of the wind in PBL 
(between the surface and geostrophic wind). At ( )00 == VR  follows the well 
known Gaussian distribution for 2C  perpendicular to the wind velocity. At 0≠R the 
integral average turning of the wind ( arctgR=α ) in the whole PBL is considered 
in 2C . On Fig.8 is presented the parameterized, by the Pasquill stability classes, 
integral turning parameter R  (Syrakov, Stefanova 2001). It can be seen that with 
increasing of atmospheric stability the integral effect of turning of the wind in PBL 
also increases. 
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Figure 8. Values of integral wind turning parameter R  on stability classes. 
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 Let’s now see the vertical diffusion 1C . At power laws for ( )zU and ( )zkz : 

( ) m
u zazU = , n

kz zbk = ,                                                                                               
(23) 
Huang (1979) received the following analytical solution: 
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where nm −+= 2α , ( ) αν n−= 1 , ν−I  is a modified Bessel function of first kind of 
order ( )ν− , Q is the source strength, H is effective height given by (2). This solution 
is detailly explored and used for determination of the statistical moments in (Brown 
et al,. 1997). From the non-Gaussian solution (21), (24), at 0=z , 0=y  and 0=R  
we obtain respective expression for the surface, along the plume axis, concentration. 
Considering that m

u Ua −= 1010 ( from the comparison of (23) and (3)) follows that 
this concentration depends on 10U . From the condition for extremum about 10U  and 
using a procedure identical to that in paragraph ( 2.2), now we can receive analytical 
expression for all critical parameters (8)-(11). For example for crU10 and mcrX , we 
have: 
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where [ ] 112 −+= kkmlM , ( )dk +−= 11 , ( ) 122 −−= ndk . These parameters are 
modification of (8) and (9) for the case when it is used the non-Gaussian plum 
model. The difference is that instead of ( )xzσ  in the non-Gaussian model it’s used 

zk -closure. Besides that and at the non-Gaussian model, we can determine the 
respective dispersion ( )xzσ , using the definition formula 
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where Γ is the Gamma function, ( )xz ~ α2x  is centroid of concentration distribution. 
Considering the asymptotic results for ( )zU and ( )zkz  (given by (23)) following by 
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Monin-Obukhov similarity theory: free convection ( )34,31 =−= nm , neutral 
stratification ( )1,71 =≈ nm  and strong (“z-less”) stability ( )0,1 == nm , we have: 

                         23x  at free convection 
( )xzσ ∼            87x at neutral stratification                        

(28) 
                         31x  at strong stability. 
In a identical way it can be determine the quantity skewness, which appear to be 
different from zero in correspondence with the non-Gaussian model (21), (24). 
 
3. CONCLUSI0N 
 
 On the basis of power law approximation of the well known dispersion 
curves of Briggs in the frames of Gaussian and non-Gaussian Pollution model, it had 
been determined a series of main maximal and critical diffusion parameters and 
meteorological conditions at which they occur characterized by the Pasquill stability 
classes. 
 The majority of the results are given as exact analytical solutions which make 
them easy to use for estimation of the worst-case ambient conditions.  
 In result of taking into account the integral effect of wind turning in the non-
Gaussian model it is easy to see that the maximal and critical diffusion parameters 
decrease compared to this determined with the Gaussian model in the other  
paragraphs. 
  A detail joint study of these effects together with the gravity deposition 
inversion effect is in interest of a future analysis. 
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