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ABSTRACT  
 
Positive matrix factorization (PMF) receptor model is applied to volatile organic compound 
(VOC) data collected at a residential site in Ankara, Turkey during summer of 2003. Data set 
includes 98 compounds containing, isoprene, halogenated compounds, aromatics, paraffins 
and olefins. The PMF model explained at least 96% of variation in the data. The sources and 
computed average source contribution estimates (SCE) are; gasoline vehicle exhaust 42%, 
diesel vehicle exhaust 30%, architectural coating 11%, biogenic emissions 9% and solvent 
use 8%. Motor vehicle emissions are the major source of VOCs measured at residential 
station in Ankara during summer. 
 
Key Words: Positive Matrix Factorization, Receptor Modeling, Volatile Organic 
Compounds, Source Contribution Estimate. 
 
1. INTRODUCTION  
 
Receptor models are mathematical procedures for identifying and quantifying the 
sources of air pollution at a site (i.e., receptor), primarily on the basis of 
concentration measurements at the receptor site and generally, without need of 
emission inventories and meteorological data (Watson et al., 2001). Receptor 
modeling is a critical tool in developing air quality management plans. In this 
research, Positive Matrix Factorization (PMF) is applied to volatile organic 
compound (VOC) data collected at a residential site in Ankara, Turkey during 
summer of 2003. 
 
Positive Matrix Factorization is a new variant of receptor models. Unlike more 
conventional methods of factor analysis such as principal component analysis (PCA), 
PMF produces non-negative factors, aiding factor interpretation, and utilizes error 
estimates of the data matrix. PMF assumes that X is the matrix of observed data and 
σ is the known matrix of standard deviations of elements of X. Both X and σ have 
dimensions of nxm. The model solves bilinear matrix problem X=GF+E where G is 
the unknown factor scores matrix of dimensions nxp, F is the unknown factor 
loadings matrix of dimensions pxm, and E is the matrix of residuals. The problem is 
solved in the weighted least square sense. Furthermore the solution is constrained so 
that all the elements of G and F are required to be non-negative (Paatero and Tapper, 
1994). Over the past few years PMF has been successfully applied in many 
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atmospheric studies (Hopke, 2003; Paterson et al., 1999; Polissar et al., 1998; Zhao 
et al., 2004). 
 
The aim of this research is to perform source apportionment of VOCs in Ankara. 
Source apportionment is an important step in the development of air pollution control 
strategies. This is the first receptor modeling study conducted to apportion sources of 
speciated VOCs measured in an urban atmosphere in Turkey.  
 
2. MATERIALS AND METHODS 
 
Ambient air measurements were conducted as part of this research to generate VOC 
data set. The sampling was conducted at consecutive 4-hour intervals over a 24-hour 
period for two months in summer and two months in winter seasons at a nose-level 
sampler located on a residential site in Ankara. Samples were also collected at a 
tunnel and underground garage to generate motor vehicle related source profiles. 
Samples were collected onto cartridges packed with Tenax TA and Carbopack B 
resins. Analysis was performed by thermal desorption followed by gas 
chromatography coupled to a mass selective detector (GC/MSD). Time resolved data 
provide information on ambient levels of 98 VOCs ranging from C5 to C12, 
including, isoprene, halogenated compounds, aromatics, paraffins and olefins. This is 
the first speciated VOC data set generated in Ankara. Detailed information on 
sampling and analytical methodology is provided by Kuntasal et al. (2004).  
 
Two-dimensional Positive Matrix Factorization (PMF2) receptor model is applied to 
Ankara VOC data. There are two types of input to the model, namely; i) data matrix 
and ii) error estimates of the data matrix. A pretreatment of data is required prior to 
utilize in the model. Although PMF2 can handle incomplete data, very high amount 
of below detection limit (BDL) or missing values might result in erroneous results. In 
this study, a method suggested by Paatero and Hopke (2003) for discarding or down 
weighting of high-noise variables was utilized. In the suggested method, a variable is 
called “weak” variable if it contains signal (S) and noise (N) in comparable amounts. 
Similarly, variables containing much more noise than the signal are termed “bad” 
variables. The element with the S/N larger than 2 and between 0.2 and 2 can be 
considered as a normal and a weak element, respectively. However, the element with 
the S/N<0.2 can be considered as “bad” variable. The bad element should be 
excluded from analysis, unless it is an important marker for one of the sources.  
 
The model is computed under different initial conditions in order to obtain optimum 
solution. A critical step in PMF analysis is determination of the number of factors 
(i.e., sources). The rules suggested by Zhao et al. (2004) are used in this research. 
Model performance parameters including sum of squares errors (Q) and distribution 
of scaled residuals helped ascertain the optimum solution. PMF2 runs with 5 factors 
yield optimum solution.  
 
In general, bilinear factor analysis has rotational ambiguity (Paatero et al., 2002). In 
the PMF2, FPEAK option is used to control rotation problem. Effect of this 
parameter is investigated. PMF2 is computed with 5 factors and FPEAK values 
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ranging from -1.0 to 1.0 for the summer data set. Model runs with FPEAK values of -
1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 0.7 and 1.0 yield calculated Q values of 3415, 3173, 
3112, 3113, 3109, 3176, 3230, and 3289, respectively. The calculated Q value 
increases by an increase in absolute value of FPEAK. FPEAK value of -0.5 results in 
a slight change in source profiles. FPEAK value of zero where the change in Q is 
slight is accepted as the optimum value.  
 
3. RESULTS AND DISCUSSIONS 
 
Utilization of PMF2 with robust mode, FPEAK value of 0.0 and five factors yielded 
the optimum solution that explains variation in the VOC data generated at residential 
site in Ankara during summer campaign. Factors identified by PMF2 are interpreted 
qualitatively by evaluating source profiles (i.e., factor loadings), time variations in 
source contributions (i.e., factor scores) and explained variations (EV) that are 
generated by the model. The source profiles are used as the final criteria for source 
identification. The EV profiles are provided for reference only. Source profiles 
generated by the model for summer data set are shown in Figure 1.  
 
Source profile computed for Factor 1 (F1 in Figure 1) shows that isoprene and n-
pentane are the most abundant species in this factor. This factor explains greater than 
80% of the variance in isoprene concentration. Isoprene is a very well known marker 
for biogenic emissions (Watson et al., 2001). Source contribution for this factor is the 
highest during daytime and the lowest during nighttime sessions. This pattern 
indicates the relationship between sunlight and emission from Factor 1, which agrees 
with the sunlight dependence of emissions from plants. Factor 1 is identified as 
biogenic emission source. 
 
Source profile computed for Factor 2 (F2 in Figure 1) indicates that toluene is the 
most abundant compound in this factor. Greater than 30% of variances in 
chloroform, toluene and cyclohexane concentrations are explained by Factor 2. 
Source contribution for Factor 2 is the highest during morning session and negligible 
during night session. Source profile for Factor 2 is compared with the profiles 
available in the literature to identify the source accurately. Among various profiles 
used in comparison, Factor 2 shows the best fit (R2>0.90) with architectural coating 
profiles (i.e., Na et al., 2004; Scheff et al., 1989). Contributions of toluene, m&p-
xylene and o-xylene are 62%, 6% and 2% in Factor 2, respectively. High abundance 
of aromatic compounds in Factor 2 indicates that Factor 2 is solvent-based 
architectural coating source rather than water-based coating. 
 
Source profile for F3 depicted in Figure 1 shows that toluene, m&p-xylene, benzene 
and 2-methylpentane are among the most abundant compounds in Factor 3. This 
factor explains variation in most of the light hydrocarbons. Abundance of BTEX 
compounds and the source profile pattern indicate that this profile could be 
associated with motor vehicle emissions.  
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Figure 1. Source profiles computed by PMF2 for summer data set. 
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Source contribution averaged over sampling sessions for Factor 3 show a well-
defined diurnal variation, which is typical for traffic emissions with high 
contributions during morning and evening rush hours and low contribution during 
noon session. The source profile is compared with the running vehicle exhaust and 
fuel profiles generated as part of this research and presented by Kuntasal et al. 
(2005). Good correlation (R2>0.90) is observed with exhaust profiles. Correlation 
with gasoline fuel profile is better than diesel fuel profile. Thus, Factor 3 is identified 
as motor vehicle exhaust associated mostly with gasoline-derived vehicles. 
 
Factor 4 source profile (F4 in Figure 1) shows that carbon tetrachloride, benzene, 
perchloroethylene (PERC) are among the most abundant compounds. PERC is a very 
well known marker for dry cleaning (Scheff et al., 1989; Watson et al., 2001). Factor 
4 explains most of the variation in carbon tetrachloride, 1,1,1-trichloroethane (TCA) 
and trichloroethylene (TCE) that are commonly used in industrial processes and 
household cleaners and polishes (Nazaroff and Weschler, 2004). The source 
contribution does not present a significant diurnal pattern for this factor. Factor 4 is 
identified as a solvent-use source from various applications.  
 
Toluene, m&p-xylene, 1,2,4-trimethylbenzene and benzene are the most abundant 
compounds in the source profile for Factor 5 (F5 in Figure 1). This factor explains 
variation in most of the heavy hydrocarbons. Source contribution indicate a diurnal 
variation that is very similar to that observed for Factor 3 that is higher source 
contributions during morning and evening rush hours than noon hours are observed. 
Factor 5 is compared with the running vehicle exhaust and fuel profiles generated as 
part of this research. Good correlations (R2>0.90) are observed with exhaust profiles. 
As this profile explains most of the variation in heavy hydrocarbons, Factor 5 is 
identified as running vehicle exhaust strongly influenced by diesel emissions.  
 
The source contribution estimates (SCE) are calculated for each identified factor 
using linear regression method that is suggested by Andersen et al. (2001). The 
results are provided in Table 1. Gasoline vehicle exhaust (42%) and diesel vehicle 
exhaust (30%) sources contribute most of the VOC emissions observed at the 
residential station during summer campaign. Architectural coating is the third most 
abundant source with 12% contribution. Biogenic emissions and solvent use account 
for 9% and 8% of the total VOC concentration, respectively.  
 
 

Table 1. Summary of VOC sources and computed SCEs at residential station. 
 

VOC Source SCE (%) 
Gasoline vehicle exhaust 41.77 
Diesel vehicle exhaust 29.71 
Architectural coating (solvent based) 12.11 
Biogenic emissions 8.75 
Solvent use 7.66 
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Model performance is also evaluated. Linear regression between the modeled (i.e., 
predicted) and measured (i.e., observed) VOC data is performed. The model results 
reveal a very good fit with the measured VOC data (see Figure 2) with R2 value of 
0.99 and intercept of 1.05. Ratio of the modeled to measured total VOC 
concentration is 0.95. 
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Figure 2. Observed vs. Predicted VOC concentration 

 
Scaled residual errors are also inspected to investigate performance of the model. 
Most of the scaled residuals are between -2.0 and 2.0 with a random distribution of 
positive and negative values. The frequency distributions of scaled residual errors for 
isoprene, TCA, n-octane and 2-ethyltoluene are shown in Figure 3 as example. 
 

 
Figure 3. Frequency distribution plot for scaled residual errors. 
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4. CONCLUSIONS  
 
Receptor modeling technique is applied for the first time in Turkey to VOC data 
collected in an urban atmosphere. Positive Matrix Factorization model is used to 
apportion sources of VOCs at a residential site in Ankara during summer season. On 
the average, motor vehicle related sources contribute to 72% of the total VOC 
concentration. The solvent related sources including solvent use and the architectural 
coating result in about 20% contribution. Motor vehicles are the major source of 
VOCs measured at the residential station in Ankara during summer campaign. PMF 
runs also successfully resolved biogenic emission source that is effective during 
summer campaign. 
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