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ABSTRACT  
 
This work has a two-fold objective: a review of the current existent methodologies to 
estimate modelling uncertainty; the preparation of some guidelines for this modelling 
uncertainty estimation, which can be used by local and regional authorities responsible for 
air quality management. Examples of modelling uncertainty estimation, using statistical 
analysis and the European Directives quality indicators, are presented and discussed.  
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1. INTRODUCTION 
 
Air quality models are powerful tools to predict the fate of pollutant gases or aerosols 
upon their release into the atmosphere. Dispersion is primarily controlled by 
turbulence, which is random by nature, thus cannot be precisely described or 
predicted by means of basic statistical properties. As a result, there is spatial and 
temporal variability that naturally occurs in the observed concentration field. On the 
other hand, uncertainty in the model results can also be due to factors such as errors 
in the input data and model formulation. Because of the effects of uncertainty and its 
inherent randomness, it is not possible for an air quality model to ever be “perfect”, 
and there is always a base amount of scatter that cannot be removed (Chang and 
Hanna, 2004). Nevertheless, air quality models need to be properly evaluated before 
their predictions can be used with confidence, since model results often influence 
decisions that have large public to models health and economic consequences. 
Therefore information about uncertainties associated application is as important as 
their resulted data, and should be correctly estimated and interpreted. The uncertainty 
concept is one of the crucial points of Quality Assurance/Quality Control (QA/QC) 
procedures that should provide quantitative information about the modelling 
precision, identifying the uncertainty sources and their potential reduction. The 
present European legislation defines the requirements of QA/QC procedures for air 
quality modelling, including the definition of Quality Objectives as an acceptability 
measure, to guarantee they indicate a good model performance and reliable 
modelling results for decision makers. However, a practical application of these 
requirements and interpretation of the uncertainty analysis results based on the 
recommended methodology is difficult, and in some cases incomprehensible for non-
expert users. The development of a consistent procedure for the uncertainty 
evaluation is still a challenge for the scientific community.  
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2. MODEL UNCERTAINITY ESTIMATION METHODOLOGIES 
 
Uncertainty analysis is defined by Morgan and Henrion (1990) as the computation of 
the total uncertainty induced in the output by quantified uncertainty in the inputs and 
model, and the attributes of the relative importance of the input uncertainties in terms 
of their contributions. Thus, total model uncertainty can be defined by the sum of the 
model uncertainty, variability and uncertainty on input data. Uncertainties associated 
with model formulation may be due to erroneous or incomplete representation of the 
dynamic and chemistry of the atmosphere, incommensurability, numerical solution 
techniques, and choice of modelling domain and grid structure. Uncertainties in input 
data are described in terms of emissions, observational data, meteorology, chemistry 
and model resolution. Variability refers to stochastic atmospheric and anthropogenic 
processes. It contributes to uncertainties discussed previously, like those associated 
with emissions estimation and representations of chemistry and meteorology. 
The total model uncertainty can be determined by comparison between observations 
and model predictions through the application of data Quality Indicators, which 
reflect the ability of a model to simulate real world phenomena. Besides being 
difficult to define quantitative Quality Indicators for model evaluation, applications 
of such indicators help to understand model limitations and provide a support for 
model intercomparison.  
There can be three components to the evaluation of air quality models: scientific, 
statistical and operational (Chang and Hanna, 2004). In a scientific evaluation, the 
model algorithms, physics, assumptions and codes are examined in detail for their 
accuracy, efficiency and sensitivity. This exercise usually requires in-depth 
knowledge of the model. For statistical evaluation, model predictions are examined 
to see how well they match observations. The operational evaluation component 
mainly considers issues related to the user-friendliness of the model (user’s guide, 
user interface, etc). This work will focus mainly on scientific and statistical model 
evaluation and on the estimation of the total uncertainty. 
 
2.1 Sensitivity analysis 
Uncertainties in modelling systems are often studied using sensitivity analysis 
procedures. It is assumed that a model consists of a set of equations with m 
dependent or “output” variables and n independent variables plus input parameters. 
The sensitivity coefficient can be defined as the ratio of the fractional change in an 
output variable to the corresponding fractional change in an input variable. The 
combined effects of variations in multiple input parameters can be estimated by 
assuming that there are no correlations among variables and there are no nonlinear 
effects, giving the result that the total fractional uncertainty in a given dependent or 
“output” variable is the square root of the sum of the squares of each individual 
sensitivity coefficient. 
Nevertheless, this sensitivity coefficient approach has problems for large scale 
photochemical grid models with input parameters exhibiting relatively large 
uncertainties for systems that are nonlinear and input variables strongly correlated. 
Advanced mathematical procedures and software systems have been developed 
allowing sensitivity coefficients to be evaluated for more complex modelling systems 
(e.g. Carmichael et al., 1997; Saltelli et al., 2000). 
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2.2 Statistical analysis 
Uncertainties can be characterized and air quality model evaluation can be 
determined by statistical analysis, where model predictions are examined to see how 
well they match observations. Many scientists have carried out discussion on the 
evaluation of air quality models and on the development of general evaluation 
methods; however, standard evaluation procedures and also performance standards 
still do not exist. Traditionally, model predictions are directly compared to 
observations, but this direct comparison method may cause misleading results 
because uncertainties in observations and model predictions arise from different 
sources (Chang and Hanna, 2004). 
As already mentioned, the uncertainty in observations may be due to random 
turbulence in the atmosphere and measurements errors, whereas the uncertainty in 
model predictions may be due to input data errors and model physics. Hanna et al. 
(1993) recommended a set of quantitative statistical performance measures for 
evaluating models, which have been widely used in many studies (e.g. Nappo and 
Essa, 2001; Ichikawa and Sada, 2002) and have been adopted as a common European 
model evaluation framework (Olesen, 2001). Table 1 presents the main statistical 
parameters used as quality indicators in these studies. 
 

Table 1. Quality indicators for air quality model performance evaluation 
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Since the distribution is close to log-normal for most atmospheric pollutant 
concentrations, the linear measures FB and NMSE may be overlay influenced by 
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infrequently occurring high observed and/or predicted concentrations, whereas the 
logarithmic measures MG and VG may provide a more balanced treatment of 
extreme high and low values. Nevertheless, MG and VG may be overly influenced 
by extremely low values, near the instrument thresholds and are undefined for zero 
values. FAC2 is the most robust measure, because it is not overly influenced by 
outliers. FB and MG are measures of mean relative bias and indicate only systematic 
errors, whereas NMSE and VG are measures of mean relative scatter and reflect both 
systematic and unsystematic (random) errors. The correlation coefficient (r) reflects 
the linear relationship between two variables and is thus insensitive to either an 
additive or a multiplicative factor. Some authors recommend this parameter when 
large-scale models with gridded fields are involved (McNally and Tesche, 1993). 
Elbir (2003) proposed a statistical analysis that included the index of agreement (d), 
which determines the degree to which magnitudes and signs of the observed value 
about mean observed value are related to the predicted deviation about mean 
predicted value, and allows for sensitivity toward difference in observed and 
predicted values as well as proportionality changes. Studies conducted by 
Sivacoumar and Thanasekaran (1999) and Karppinen et al. (2000) also established 
the usefulness of the index of agreement and other above-mentioned statistical 
parameters for evaluating model performance. The referred index of agreement (d) is 
defined as follows: 
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considering the same definitions of variables of Table 1. The index of agreement 
varies from 0.0 (theoretical minimum) to 1.0 (perfect agreement between observed 
and predicted values) and gives the degree to which model predictions are error free. 
To show how this statistical analysis methodology could be applied to a test case, an 
air quality model performance evaluation was conducted to an application of two air 
quality models to an ozone episode occurred in Portugal, in 2001. A 48 hours 
simulation was performed for Continental Portugal, over a gridded domain with 10 
km horizontal resolution, using CHIMERE and CAMx models, aiming to estimate 
hourly ozone concentrations (Ferreira et al., 2004). Models performance was 
evaluated for 5 air quality monitoring stations, three of them considered as 
background stations and two located in industrial areas. Results of the referred 
analysis are summarised in Table 2. It must be stressed that the correlation 
coefficient is one of the most important parameters, as it reflects the ability of the 
models to simulate measured data, and, based on the results presented in Table 2, its 
values reveal a little better behaviour of CAMx model. The values obtained for the 
bias, reported by FB, ANB and MG, reflect the differences between average 
observed and simulated results. Considering that these three parameters contribute 
with the same kind of information, only one of them is, in fact, required for a 
statistical analysis of modelling results. RMSE and NMSE give information about 
the errors obtained within the observed-predicted pairs of results, but RMSE does not 
ignore the range of the variable in cause, ozone concentration, which in some cases 
could lead to incorrect interpretations of the results of this parameter. Thus, a 
normalized form of the parameter, NMSE, could be in such cases more adequate. FB 
and MG obtained values for CHIMERE are closer to the ideal values, 0 and 1 
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respectively, than the correspondent results for CAMx, meaning that systematic 
errors are higher in CAMx simulation results. 
 

Table 2. Statistical analysis results for CHIMERE and CAMx simulation. 
 

Average for all stations Average for background stations Parameter CHIMERE CAMx CHIMERE CAMx 
r 0.52 0.62 0.56 0.70 
Fb -0.16 0.28 -0.19 0.20 
RMS 49.10 51.15 43.14 42.66 
NSD 1.12 0.77 1.13 0.84 
NMSE 0.27 0.45 0.25 0.34 
ANB 1.06 0.52 1.26 0.53 
MG 0.76 1.44 0.73 1.48 
VG 1.16 1.16 1.21 1.19 
FAC2 1.19 0.77 1.24 0.84 
d 0.71 0.69 0.78 0.79 

 
However, both modelling applications have systematic and random errors as 
indicated by VG results. The parameters MG and VG are, in some way, useless, 
since they are sensitive to very low concentrations, which occur at night during the 
application example. Therefore, these parameters should be carefully used in such an 
evaluation. Regarding FAC2 and d, similar results were obtained for both models. 
Based on the ideas pointed out, it can be concluded that every statistical parameter 
plays a role in the evaluation of model performance and uncertainties estimation, but 
some of them could be considered more important, useful and required for such an 
analysis, namely, the correlation coefficient (r), the fractional bias (FB), the root 
mean square error (RMSE) (without forgetting its accounting on the magnitude of 
the studied variable), and the normalised mean square error (NMSE). For EPA 
regulatory applications, the primary objective is to evaluate how well an air quality 
model simulates the maximum one-hour averaged concentration anywhere on the 
sampling network. USEPA (1996) presents a compilation of a series of 
photochemical model validation exercises focused on the model’s ability to predict 
the domain-wide peak ozone concentration and the concentrations at all locations 
with observed ozone data above 60 ppb. These quality indicators are described in 
Table 3, including the ideal values, which are merely indicative, once they were 
defined based on tests performed. Table 4 presents the EPA quality indicators that 
were also computed for the application described above. 
 

Table 3. EPA’s quality indicators for air quality model performance evaluation 
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Table 4. EPA quality indicators obtained for CHIMERE and CAMx simulation 
 

Average for all stations Average for background stations Parameter CHIMERE CAMx CHIMERE CAMx 
Au 18.0 46.6 10.1 26.5 
D -0.8 0.1 -1.1 0.1 
E 0.0 0.1 0.0 0.1 

 
This group of parameters complements the previous analysis, since it evaluates the 
model capability to simulate peaks, which is particularly important for the evaluation 
of atmospheric pollutants episodes, like the example exposed.  
Another way to evaluate model performance in a stochastic framework is to assume 
that the observed concentration is simply a random sample taken from the probability 
density function (PDF) of the predicted concentration, which can be estimated by 
such techniques as higher-order turbulence closure schemes and Monte Carlo 
analysis (Chang and Hanna, 2004). Several authors already applied the Monte Carlo 
method for different urban/regional scale models (e.g. Moore and Londergan, 2001; 
Beekmann and Derognat, 2003). This method is also the most commonly used to 
estimate uncertainties in model input variables, since it has a quite simple principle 
and it can applied to a complete set of more than 100 input parameters and it allows 
use of standards nonparametric statistical tests concerning confidence intervals (Ang 
and Tang, 1984; Borrego et al., 2004). In summary, multiple performance measures 
and methods should be applied and considered in any model evaluation exercise, as 
each measure/method has advantages and disadvantages and there is not a single 
method that is universally applicable to all conditions.  
 
2.3 Model uncertainty according to the EU Directives 
 
The Framework Directive (FWD) and Daughter Directives establish requirements for 
air quality modelling, including the definition of the Modelling Quality Objectives, 
as a measure of modelling results acceptability. In this context, the uncertainty for 
modelling and objective estimation is defined as the maximum deviation of the 
measured and calculated concentration levels, over the period for calculating the 
appropriate threshold, without taking into account the timing of the events. The 
quality objectives defined for each quality indicator are listed in Table 5.  
 

Table 5. Modelling Quality objectives established by EU Directives 
 

Pollutant Quality Indicator Quality Objective Directive 
Hourly mean 50-60% 
Daily mean 50% SO2, NO2, NOx 
Annual mean 30% 

PM, Pb Annual mean 50% 

1999/30/EC 

CO 8-hour mean 50% 
Benzene Annual mean 50% 2000/69/EC 

8-hour daily mean 50% 
Ozone 

1-hour average 50% 
2002/03/EC 
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Model quality measures described in the EU Directives are interpreted as the relative 
maximum error without timing (RME), which is the largest concentration difference 
of all percentile (p) differences normalized by the respective measured value. 
 

)max(

)max(

pp CpCop

pp

Co
CpCo

RME
−

−
=      (2) 

 
The question of timing is relevant for those hourly and daily limits, or target values, 
which are defined as a number of allowed exceedances of a given threshold 
concentration. Besides that, the model quality objectives for the allowed uncertainty 
are given as a relative uncertainty, without clear guidance on how to calculate this 
relative uncertainty. It could be assumed that the respective measured value shall be 
used to normalize the absolute difference between the maximum deviation of the 
measured and calculated concentration levels. Another possibility would be to take 
the maximum relative deviation, but this approach could shift the emphasis to the 
very low measured concentration ranges, where usually the largest relative deviations 
between observations and calculations occur, which could be the main reason for 
non-compliance of annual mean values accuracy requirements. Besides that, other 
problems of the interpretation of the model accuracy requirements, according to the 
EU Directives could occur since there are no differences between a short-term and 
long-term model application accuracy analysis, being the first one in advantage due 
to the number of paired-in-time results. An alternative model error measure was 
already proposed by Stern and Flemming (2004), defining the quality indicator as the 
concentration difference at the percentile corresponding to the allowed number of 
exceedances of the limit value normalized by the observation (RPE).  
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This measure is more robust than the error defined in the EU Directive and also 
evaluates the model performance in the high concentration ranges, but without the 
sensitivity to outliers. Since the model accuracy is examined in the concentration 
range of the limit values, there is also a direct link to the EU Directives. In order to 
test and illustrate these model accuracy measures, a one-year simulation of the 
chemistry-transport model CHIMERE was used. CHIMERE was applied in the 
regional scale mode, covering Portugal with a resolution of 10 km for the entire year 
2001 (Borrego et al., 2005). The model results were compared with measured data 
from 23 sites of the national air quality monitoring network according to the EU 
directives thresholds. In Table 6 is presented an average of the relative maximum 
error (RME) and the relative error at the percentile that correspond to the allowed 
number of exceedings of the limit value threshold (RPE) for the background and all 
the monitoring sites, for each pollutant indicator defined by the EU Directives. 
Concerning the hourly and daily averages indicators, the analysis of the relative 
maximum error (RME) defined by the EU directives reveals that it is calculated at 
the highest measured value. 
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Table 6. Average of RME and RPE for the background and all the monitoring sites, 
for each pollutant indicator defined by the EU Directives 

 
Pollutant EU Directives indicators RME 

(%)* 
Percentile (P) RPE 

(%)* 
RPE 

(%)**
Human health protection 
(hourly mean) 

79 99.73 (25th max 1h mean) 34 40 

Human health protection 
(daily mean) 

66 99.18 (4th max 24h mean) 57 69 

Vegetation protection  33 annual mean 33 46 

SO2 

Vegetation protection  44 winter mean 44 58 
Human heath protection 
(hourly mean) 

81 99.79 (19th max 1h mean) 39 48 NO2 

Human heath protection 47 annual average 47 50 
Human heath protection 
(8h running daily mean) 

69 93.15 (26th max 8h daily 
mean) 

16 35 O3 

Vegetation protection 71 AOT40 49 65 
*considering only background monitoring stations;  ** considering all monitoring stations 
 
In these cases, the assessment of the model accuracy depends on the model 
performance in a concentration range having an extremely small probability. This 
also means that the model accuracy assessment could probably be based on an outlier 
concentration caused by an error of the monitoring unit or an extreme weather 
situation. In fact, and in opposite to the RME, the alternative model error measure 
proposed (RPE) shows a quite total compliance with the legislation accuracy 
requirement of 50% for all the pollutants indicators. These conclusions are in 
agreement with other model evaluation studies with similar or even higher 
complexity (Stern and Flemming, 2004; Hass et al., 2003). The analysis of Table 6 
reveals also the problem of the heterogeneity of the observed concentration fields 
and the importance of selecting the adequate and representative monitoring sites for 
model resolution, since it is impossible for a grid model to simulate all stations with 
the required accuracy. In spite of the European Air Quality monitoring network 
(EUROAIRNET) considers that both spatial and temporal representativeness of 
monitoring stations should be addressed in uncertainty estimation procedures, in 
order to guarantee a more accurate comparison with air quality standards, the 
Daughter Directives say nothing about the monitoring stations representativeness and 
the selection of criteria for the number and type of stations to be used on model 
accuracy evaluation. Nevertheless, there is a need for pre-selecting the stations to be 
used for model evaluation and that should be relied on the sites classification or on 
the prior knowledge of the air quality regime of the measurement sites (based on 
daily mean and the daily variation of each pollutant). Besides the monitoring stations 
representativeness, there is absence of any guidance in the EU Directives about 
measurement inaccuracy and incomplete data coverage that should all be taken into 
account in the context of a model evaluation. Regarding to data coverage, the EU 
Directives require a minimum of 90 % data coverage of the hourly or daily values. In 
fact, this is another model accuracy check problem since in the past the data coverage 
of the Portuguese stations was mostly below 90%.  
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3. CONCLUSIONS 
 
A systematic description of the modelling uncertainty analysis methodologies, based 
on bibliography review, was performed and discussed. Examples of air quality 
modelling uncertainty estimation at regional scale were presented, taking into 
account the review of the current existent scientific and legislated methodologies.  
The statistical analysis suggested to evaluate model performance and to estimate 
uncertainties comprises a set of parameters, giving information about the ability of 
the model to predict the tendency of observed values, errors on the simulation of 
average and peak observed concentrations, and type of errors (systematic or 
unsystematic). From the application exercise, it was concluded that despite all 
parameters are important, it is possible to define a subset of parameters able to 
reproduce the general uncertainties estimation, comprising the correlation 
coefficient, the fractional bias and the root and normalized mean square errors. 
Parameters that reflect the capability to simulate peaks should be taken into 
consideration in air pollution episodes simulation. Concerning the quality indicators 
defined by EU directives, the results show that the legislated uncertainty estimation 
measures are ambiguous and inadequate in several aspects, mainly in what concerns 
the error measures for hourly and daily indicators based on the highest observed 
concentration. A relative error at the percentile correspondent to the allowed number 
of exceedances of the limit value was suggested and tested, showing that is more 
robust and also evaluates the model performance as required. Besides that, the EU 
directives do not give rules on how to deal with monitoring stations 
representativeness on model evaluation, an important issue to guarantee the correct 
information about measured or predicted exceedances of thresholds values.  
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